Machine Intelligence and Pattern Recognition 1

PROGRESS
IN PATTERN
RECOGNITION 2

Edited by
L.N.Kanal and A.Rosenfeld

North-Holland







PROGRESS IN PATTERN RECOGNITION 2



Machine Intelligence and
Pattern Recognition

Volume 1

Series Editors

L.N. KANAL
and

A.ROSENFELD

University of Maryland
College Park
Maryland

US.A.

N
,

NORTH-HOLLAND
AMSTERDAM -NEW YORK - OXFORD



Progressm
Pattern Recognition 2

Edited by

Laveen N. KANAL
and

Azriel ROSENFELD

University of Maryland
College Park
Maryland

US.A.

P
1985

NORTH-HOLLAND
AMSTERDAM - NEW YORK - OXFORD



©ELSEVIER SCIENCE PUBLISHERS B.V,, 1985

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the copyright owner.

ISBN: 0444 87723 1

Publishers:

ELSEVIER SCIENCE PUBLISHERS B.V.
P.O. Box 1991

1000 BZ Amsterdam

The Netherlands

Sole distributors for the U.S. A. and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52 Vanderbilt Avenue

New York, N.Y. 10017

U.S.A.

PRINTED IN THE NETHERLANDS



PREFACE

We are pleased to present the second volume of our series Progress in
Machine Intelligence and Pattern Recognition (formerly entitled “Pro-
gress in Pattern Recognition”). The present volume contains nine papers,
one of them nearly of monograph length, covering a broad range of
topics in pattern recognition and computer vision.

The first three papers deal with the architectural and computational
aspects of image processing and computer vision. Yalamanchili et al.
present a hierarchical taxonomy of image processing architectures based
on the nature of the processing and communication strategies employed.
At the first level of their hierarchy, image processing systems are divided
into functionally dedicated architectures and programmable general
purpose architectures. Each of the first level categories are then further
divided into three groups: those with fixed interconnection structures,
those with bus oriented structures, and those having reconfigurable
interconnection structures. In the context of this taxonomy, the authors
classify and analyze a wide range of image processing systems appearing
in the literature. Guerra and Levialdi present a different way of looking
at many of the same image processing systems discussed in the first
paper. Their paper first reviews classical models of computation and then
considers how image processing architectures, especially parallel archi-
tectures, can be derived from such models, and how architectures can be
matched to problems. Voss et al. survey a number of interactive soft-
ware systems for computer vision. Noteworthy is their mention of several
European contributions which have often been neglected in past surveys.
The proliferation of architectural developments and software systems
for computer processing of images make these surveys and analyses
especially useful.

The second trio of papers deals with three fundamental areas of vision:
texture, shape, and motion. Chellappa presents a systematic and detailed
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exposition of two-dimensional discrete Gaussian Markov random field
models and their applications in the synthesis, compression, classifica-
tion, and restoration of images. Shapiro discusses selected examples
of recent results on shape decomposition, description, and matching.
Jain surveys the rapidly expanding field of time-varying imagery analy-
sis, covering a variety of key areas including such topics as computing
optical flow and recovering information on the three-dimensional mo-
tion of objects. These reviews should be of considerable help in assess-
ing the state of the art in three areas in which the literature is voluminous
and scattered among numerous publications.

The final set of papers deal with pattern recognition theory. Nearest
neighbor rules and decision trees are two topics which are important
for applications but on which many theoretical and design questions
remain. Fukunaga, who has been a prolific contributor to error esti-
mation, density estimation, and classification using K-nearest neighbor
rules, presents an overview of his work and discusses the nonparametric
analysis of data structure. In the second paper, Dattatreya and Kanal
discuss the major methodologies for decision tree design, bring out their
commonalities, point out the reasons why decision tree design and
use are not simple, provide an insight into the mechanisms of multistage
hierarchical classification, discuss how a decision tree designed by any
method can be adaptively tuned, and mention areas of application.

In the final paper, Goldfarb presents a mathematical treatment of pattern
recognition based on representing patterns in pseudoeuclidean vector
spaces, 1.e., vector spaces in which the scalar products are given by sym-
metric bilinear forms which are not necessarily positive definite; the
Minkowski space of special relativity is an example of such a space.
Goldfarb is interested in exploratory techniques for doing data analysis
and pattern recognition with dissimilarity matrices by embedding data
points in such vector spaces and considering discriminant functions and
clustering in such a space in which some properties of a distance func-
tion still hold but in which the triangle inequality need not hold. Al-
though there are many open questions, both theoretical and applied, the
approach is of interest because all types of data, statistical, structural,
and mixed, could be embedded in some pseudoeuclidean vector space
. and the type of analytical machinery used in the classical case of statis-
tical data could thus be applied to all such data.

With the broadening of the scope of this series to include machine intelli-
gence, we expect the frequency of these volumes to increase. Several
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volumes dealing with specific topics are also in preparation. We hope that
readers will continue to find them useful.

Laveen N. Kanal
Azriel Rosenfeld

College Park, MD
October 1984
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Abstract

Conventional general purpose computers are unable to meet the computational needs of
digital image processing. This inadequacy has led to the conception and subsequent
development of a number of special purpose computer architectures for the analysis of
static and time varying imagery. Clearly, the evolution of architectures spurred by
technological development is progressing rapidly along several dimensions spanning the
- control, communication and computation domains. It is also becoming increasingly
obvious that various classes of image processing problems require widely differing
architectural solutions especially when optimality in a cost-per formance sense is a
major issue. A hierarchical tazonomy is proposed in this paper with the goal of
identi fying distinct classes of tmage processing architectures which share similar
performance and reliability characteristics. A number of representative systems
belonging to each class of the tazonomy are described. Also, per formance and reliability
issues are discussed within the context of the proposed classification scheme.

Index Terms: Bus oriented structures, communication elements, functionally
dedicated modules, image processing architectures, interconnection
structures,  performance, processing elements, reconfigurable
interconnection structures, reliability and VLSI.

1 Introduction

Image processing algorithms are characterized by large volumes of data and higher
computational requirements than conventional sequential processors can offer [5].
However, images represent a special class of data which allows a significant amount of
concurrent processing - a-large number of image processing tasks require repetitive logical
and arithmetic operations over individual pixels and neighborhoods. These requirements
and features resulted in a number of specialized approaches towards developing computer
systems for image processing applications.

Advances in technology, particularly the evolution of discrete logic into Very Large Scale
Integrated circuit (VLSI) and Very High Speed Integrated circuit (VHSIC) technologies,
have allowed the cost effective implementation of several architectures which were
previously considered impractical due the attendent cost [6-7]. These advances also

1'I‘his research was supported in part by a grant from the Air Force Office of Scientific Research under
grant AFOSR 82-0064 and in part by a grant from IBM Corporation.

2 This research was supported in part by a grant from the National Science Foundation under grant
EN6-7904037
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contributed to the broadening of the range of computational models which can be
efficiently mapped onto silicon. In addition, related concepts in parallel and distributed
processing have significantly influenced system design philosophies.

An increase in the computational throughput and concomitant complexity of image
processing systems has transformed the factors influencing system design. Though
maximizing processing speed has remained a constant underlying theme, other
considerations have started assuming relative significance. As the number of processors
and memory units included in a particular system increased, inter-processor and processor-
memory communications have started playing an important role in system design and
performance. Awareness of this issue has resulted in extensive research efforts directed
towards analyzing the role and impact of interconnection networks and related cost versus
complexity tradeoffs in a multiprocessor environment. In addition, considerations related
to system reliability and fault tolerance have been recognized to be significant, especially
in the context of image processing.

Fu has surveyed special purpose architectures for image processing [8]. These
architectures were broadly classified based on bit plane or distributed processing
orientations. Davis [9] has proposed a taxonomy which utilizes increasing flexibility with
decreasing processing speed as a basis. Danielson and Levialdi [10] have also proposed a
classification scheme based on distinct classes of parallelism: operation parallelism, image
parallelism, neighborhood parallelism and pixel bit parallelism.

A wide range of image processing architectures are surveyed in this paper. The
taxonomy which forms the basis for subsequent discussion is defined initially. The salient
features of rcpresentative machines belonging to the classes of this taxonomy are
highlighted next. Generic examples are chosen from each class and reviewed in the light
of rclevant issues including system performance and reliability. Finally, observations are
made concerning interrelationships between image processing operations ranging from low
level to high level tasks and the distinct architectural classes delineated through the
taxonomy. These are important in the progressive evolution of architectures towards
providing optimal solutions for image processing problems.

2 The Hierarchical Taxonomy

In choosing an appropriate taxonomy for a diverse class of architectures, it is important
to identify and emphasize the aspects which reflect the overall design philosophies.
Performance and reliability are identified as appropriate choices for achieving the above
goal. In addition, a generalized architectural model of an image processing system is
developed and serves as a basis for deriving the taxonomy. This model (figure 1) includes
a function M(a) which maps an algorithm, a, onto three distinct and possibly distributed
architectural entities; control, communication and processing. The taxonomy to be
proposed addresses issues related to communication and computation, and results in the
partitioning of image processing systems into classes possessing similar performance and
reliability properties.

In general, the processmg and communication aspects of a multicomputer system can be
represented by a pair of fundamental elements,

1. Processing elements (PE modules) and
2. Communication elements (CE modules)

respectively. Each processing element could be provided with local memory, share global
memory with other PE modules or both (figure 2(a)-(c)). Similarly, each communication
element (CE) in turn consists of link elements and a switching element as constituents. A
given switching element can have multiple link elements connected to it (figure 3).
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Figure 1: Generalized model of an image processing system. The
perspective identifies the viewpoint adopted in
defining the taxonomy

Technological advances, especially in the LSI and VLSI areas, have influenced image
processing architectural philosophies yielding two distinct paths. On one hand, frequently
used image processing functions are being implemented as dedicated PE modules to
maximize throughput. One such proposal, due to Nudd [11], involves realizing a general
class of low level operations as LSI primitives. A distinction between low level and high
level processing was made based on the throughput and accuracy required to sustain real
time processing rates (figure 4). Alternate proposals [12] recommend systems which strive
to match a wide variety of possible processor structures to a broad spectrum of different
algorithms. These differing architectural philosophies justify the classification of image
processing systems based on the PE module structure into:

1. Homogenous or general purpose programmable modules and
2. Heterogenous or functionally dedicated modules

Parallel processing of images involves mapping the set of tasks into several temporally
concurrent sub-tasks generally requiring inter-task communication. This communication is
significantly influenced by the interconnection structure of the system [13-15]. In general
several logical processing structures, e.g., trees, pipelines, etc., may be realized with a
single physical interconnection structure of PE modules through appropriate control and
mapping strategies. Three major classes of physical communication structures can be
distinguished :

1. Fized Interconnection Structures: Each PE module is connected to n {1<n<'N)
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neighboring PE modules through a set of CE modules. Two examples of such structures
are the near neighbor mesh and ring structures.
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Figure 4: Distinction between low level and
high level processing of images

2. Bus Interconnection Structures: All PE modules are interconnected through a
single CE module.

3. Recon figurable Interconnection Structures: PE modules can be configured to
realize any one of several fixed interconnection structures.

The global taxonomy for image processing systems is the result of combining the two
classification criteria presented above and is shown in figure 5. Image processing systems
are classified into general purpose and functionally dedicated architectures at the first
level. Each of these classes is further classified based on the interconnection strategy
adopted, into those employing fixed interconnection structures, bus interconnection
structures and reconfigurable interconnection structures.

3 Image Processing Architectures

Architectures belonging to the various classes of the taxonomy are described in this
section. In describing individual systems, characteristic features of the systems belonging
to each class are emphasized.

3.1 General Purpose Architectures

The programmable nature of the PE modules that these architectures are comprised of,
provides the flexibility for performing a wide range of operations. The desired throughput
rates are achieved through the concurrent operation of a large number of such modules.
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Figure 5: Global taxonomy for Image Processing Architectures

However the use of numerous PE modules to cooperatively perform an image processing
task presents complex control problems. A certain amount of overhead is experienced in
synchronizing the operations of the individual modules. In addition the communication
subsystem introduces delays in the exchange of data and control information. The choice
of the control strategies and communication mechanisms employed produces systems of
varying performance and reliability.

3.1.1 Fixed Interconnection Structures

Though many of these structures may have existed in theory for quite some time [5],
cost effective implementation is only now becoming feasible. An example is a proposal by
Unger [5] who suggested a two dimensional array of identical processors, each connected
to its four neighbors. A central controller broadcasts an instruction to all the array
elements which execute the same instruction on data in its local memory and/or data from
its neighbors. Such a system represents a class of fixed interconnection, single instruction
stream, multiple data stream (SIMD) machines and are commonly referred to as cellular
logic arrays. At the very extreme, these arrays may provide a one processor/pixel
processing capability. Due to size and cost constraints however, the processor complexity
must be kept low, and at the same time consistent with a minimum acceptable level of
performance. Similar considerations are applicable to the interconnection network. This
has typically resulted in processing elements which operate on pairs of single bits, have
limited local memory and single bit wide interconnections to four or eight neighbors.

A number of research efforts have centered around the development of such arrays. The
CLIP [186] (Cellular Logic Image Processor) program of work being pursued at University
College, London, has conducted a significant amount of research on the theoretical and
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practical applications of cellular logic to image processing [17]. A series of arrays have
been proposed and constructed. These range from earlier special purpose resistor-
transistor arrays through the switch and gate array, to the present CLIP series. The latest
in this series is the CLIP4 array.

DATA DATA
INPUT OUTPUT

INTERCONNECTION|
INPUT.

—o
DOWVHMOOITT
—o

=] )

2z INPUT
5>—— GATING

{ [t

(CARRY)

—>
N OUTPUTS

Cy TENABLE LOAD

CLIP 4 BASIC CELL

Figure 6: Single cell of the CLIP4 array processor

Figure 6 shows the structure of a single cell of the CLIP4 processor built using LSI
technology. This is a 96X96 array fabricated with eight processors per LSI chip. It is
capable of performing boolean functions on pairs of single bits. Each cell has 32 bits of
memory. Bit serial arithmetic is performed under software control enabling operations on
grey level pictures. Each cell is connected to its eight neighbors. From figure 6, it can be
seen that the communication elements are integrated into the processing elements. The
array is operated by an external controller which decodes program instructions stored in
controller memory and drives the array and it’s peripherals. CLIP4 operates with a four
phase 400ns clock. Complete array operations take under just 9 microsec with 1.2
microsec/cell for propagation beyond the immediate neighborhood. A detailed study of
the computational cost of performing some typical image processing functions using CLIP4
as compared fo a conventional minicomputer is presented in [18].

Experience with CLIP4 identified areas where further improvements might be made.
This along with the need for a processor more closely suited for the processing of grey
level images led to the design of CLIP6 [19]. In a CLIP6 processor, all data paths and
functional blocks are parallel (6 bits) and double precision where necessary {data paths to
the ALU). A condition code register provides some degree of autonomy in reacting to
control conditions. Local memory is removed from the processor to allow increased storage
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per processing element. The system implementation is currently being investigated and its
projected performance is being compared with the performance of CLIP4.

MPP (Massively Parallel Processor [20]) is a cellular logic array built by Goodyear
Aerospace Corporation. It consists of a 128X128 array of processing elements built using
VLSI technology with eight PE’s per VLSI chip. Each processing element possesses a full
adder, a variable length shift register and 1K bits of local memory. It can process variable
length operands in bit serial fashion. An interesting feature of this array is that it
incorporates fault tolerance through redundancy. When a processing element is found to
be faulty, the column in which it is contained is bypassed and an extra column of
processing elements may be included.

Other cellular arrays which are similar in overall structure, consist of a two dimensional
array of bit serial processing elements with a limited amount of local memory associated
with each processing element [21-24]. However, they do exhibit considerable differences in
processor complexity, implementation, amount of memory associated with each processor,
and a few other features.

Cellular arrays, due to their regular structure and synchronous operation are a natural
choice for VLSI implementation. Single chip cellular logic arrays of reasonable size appear
to be feasible in the near future. To this end, an NMOS VLSI chip containing a cellular
logic array [25] to provide a one processor/pixel processing capability is being developed
at Stanford University. The goal is to construct a 512X512 array on a single chip. Each
processing element consists of a full adder and has the capability for bit serial arithmetic.
Local memory consists of 32 bits as two 8 bit registers and one 16 bit register.

OUTPUT
N
. SELECTOR
D1 o >
o « 1, Fu ——]
g SN s me i< —]
s
oW
1 - c —
5% MUxX
S o 2
W
SHIFT » TO N,E,S,W
ENABLE OF NEIGHBORS

Figure 7: Basic cell of the single chip VLSI array processor

Figure 7 shows a block diagram of the processor. Due to the high density requirements
however, a number of problems are expected using currently available fabrication
techniques. These include reliablity and extremely low yield. More precise yield models
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are being developed so that the fault distribution can be estimated apriori. With a
modular design and further advances in fabrication technology, it is expected that a
processor array of 128X128 cells on a single chip can be fabricated, which would be
capable of 2500 times the operating speed of a DEC KL-10 performing comparable
operations.

These arrays derive their high speed from the simultaneous operation of all the
processing elements. They are well suited for the computation of independent local
operations. However, when communication between processors does not occur in a tightly
orchestrated way, efficient algorithm design becomes difficult [26]. In fact, control and
communication issues may begin to dominate with a consequent degradation in system
performance. As a result, increased interest is being focussed on methods for efficient
propagation of results across cellular array structures [27]. Ceilular arrays are considered
to hold promise for high speed computing in the future [28].

Two dimensional array processing structures not based on cellular logic have also been
proposed. One such structure [29] utilizes a state space model to formulate image
processing tasks that are linear and space invariant. An implementation using a two
dimensional array of microprocessors is proposed. Communication paths between the
processors are completely defined apriori. The array operates synchronously and each
processor executes a sequence of operations determined by the problem formulation.
Separate memories are available to each processor for storing different data types. This
increases the number of simultaneous accesses to memory and helps maintain synchronous
operation of the array. However, a given problem has to be formulated according to the
state space model before this system can be used.

The structure and operation of two dimensional arrays of PE modules are closely
matched to the structure of the image data and the spatial dependencies between the pixel
elements. A number of alternate data structures have also been developed for the
processing of image data, and fixed interconnection SIMD machines which match these
data structures have followed. Two examples of such data structures are quad trees and
pyramids. A number of algorithms have also been devised which exploit these data
structures. Efficient implementations of these structures are being explored. One
investigation has resulted in a proposal for a tree structured parallel architecture termed a
pyramid machine [30]. A pyramid machine is realized by stacking successively smaller
two dimensional arrays of processing elements. For example the base of the pyramid may
consist of a 64X64 array of processing elements, the next higher level a 32X32 array, the
next level a 16X16 array and so on. At any level, except at the boundaries of the
pyramid, each processor is connected to a single processor at the next higher level, four
processors at the next lower level and to its four or eight neighbors on the same level.
The image data is loaded into the base of the array and data and/or results propagate up
through the pyramid to the top. Each level operates in SIMD mode in a manner similar to
cellular logic arrays. All the levels may be in operation simultaneously and each level can
be performing a different operation. In this manner, pipelining across the array may be
achieved. This structure is very efficient for executing many of the pyramid and quad
tree algorithms and hence represents a multiprocessor architecture for solving a class of
problems. Variations of this type of architecture include arrays of simple bit-serial
processors operating in SIMD mode at the lower levels with higher levels consisting of
networks of smaller numbers of more powerful processors [31].

ZMOB [32] is a multimicroprocessor system consisting of 256 Z80A microprocessors that
communicate over a high speed shift register ring called a conveyor belt. Each processing
element consists of an 8 bit Z80A microprocessor and possesses 63K of RAM. It has a 8X8
hardware multiply unit and a 32 bit floating point arithmetic processor unit. Each PE is
interfaced to the conveyor belt through its mail stop which is a set of 16 registers that
appear as memory locations in its address space. By reading and writing into these
locations the processor controls all transmission and reception of data. The buffers in the
mail stop allow simultaneous transmission and reception of two bytes of data. Each PE
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can also communicate to the external world through a synchronous/asynchronous serial
interface and a high speed 24 bit parallel interface. The conveyor belt is conceptualized as
257 bins. Bach PE can send messages through its own bin to any of the 256 remaining
mail stops or receive messages from any of the other mail stops. The 257th mail stop is the
unibus interface to the host VAX. A complete revolution around the belt takes 25.7
microseconds (10Mhz clock), and this represents the longest transmission time from one
PE to another. This provides each PE with a data transmission rate of 80,000 bytes/sec.
This is almost the maximum rate at which a PE can move data into or out of its local
memory. Thus a PE never waits for communication. It has access to its bin as fast as it is
required, providing for these PEs the effective performance of a crossbar switch. A
distributed operating system is being developed for ZMOB [33]. Research is also
continuing to determine efficient implementations of image processing algorithms on

ZMOB [34].

The fixed interconnection architectures described in this section consist of large numbers
PE modules operating in parallel to efficiently perform an image processing task. The CE
modules in these structures possess a comparitively simple structure and in many cases are
integrated with the PE modules. Any data routing in these systems requires decisions to
be made by the PE modules with a consequent increase in the time spent on control and
communication. These structures are most efficient, in terms of processing speed, for
solving problems that map onto’them in a way that minimizes the fraction of time spent
by the processing elements on control and communication.

3.1.2 Bus Oriented Structures

In contrast to the fixed interconnection structures these architectures provide a common
medium of communication between a set of processing elements. A bus (CE module)
represents a shared resource for which contentions may arise. In such systems a great
deal of effort is spent on devising schemes for efficient allocation of this resource so that
contention is minimized.

A block diagram of the Flexible Image Processor (FLIP) [35] system is shown in figure 8.
FLIP acts as a peripheral device to a host computer. It consists of 16 processors. All the
processors are interconnected by individual buses. The Peripheral Exchange Processor
(PEP) manages the flow of data into and out of this set of processors. A separate
dedicated bus connects each processor to the PEP providing a maximum data rate of 45
Mbytes/sec. Each processor has two input ports and one output port enabling both
functions to proceed simultaneously. The flow of data on the buses synchronizes the
execution of the processors. Instruction execution involves reading data on the input
ports, performing the required computation and placing the result on the output port.
Any processor can communicate with any other processor or the PEP in an asynchronous
mode of operation. Hence data may flow through any group of processors realizing any
logical processing structure. The instruction set of a single processor includes eight bit
multiplication, shift instructions and the capability for multiple precision arithmetic. Data
and instructions are separated internally both in storage and in the signal paths.

A vision system being developed by the Robot research group at the University of Rhode
Island [36] is shown in figure 9. This system is centered around a bus which can be split
into a number of independently operating segments. This allows the simultaneous
operation of several processors which may access memory or other peripherals attached to
the same segment of the bus.” This configuration significantly reduces overall bus
contention. The bus splitters and processors are supervised by a central controller. Two
consecutive segments of the bus may be pipelined by this controller. Thus, dynamic
resetting of the bus splitters can provide some degree of reconfigurability.  This
architecture is currently being tested using two DEC LSI-11 processors, memory modules
and a bus splitter.

The requirements of real time processing impact system design in various ways, more so
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in the case of time varying imagery which involves the analysis of sequences of images.
Figure 10 shows the architecture of a multiprocessor system designed for the real time
analysis of time varying imagery [37]. In the development of this system the requirements
that it should satisfy were determined to be efficient I/O, sufficient memory for storage of
image sequences, capability for parallel access of data and a high degree of physical
parallelism. This resulted in the incorporation of dedicated I/O controllers, interleaved
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Figure 10: Multiprocessor architecture for
analyzing image sequences

memory and a two level processor hierarchy operating in a master-slave mode; a single
master processor controlling a set of slave processors. A separate bus for data, address and
control connects each processor to the memory modules. Memory conflicts are resolved by
an arbitrater associated with each memory bank. A common memory module is used for
communication between the slave processors and between the master and the slave
processors. Communication between processors is initiated by an interrupt mechanism.
On receiving an interrupt the interrupted processor checks the area in the common
memory for a message while the interrupting processor may resume processing without
having to wait for an acknowledgement. The master processor communicates in this
manner with the slave processors to distribute commands, files, programs, etc. It manages
the 1/0 controller, the console and provides an interface to the users. More generally, it
fulfills resource allocation and management functions. The master can direct interaction
between slave processors to efficiently accomplish any image processing task. In this
manner, SIMD mode of operation is possible without the instruction broadcasting or data
routing which is characteristic of a typical SIMD environment. This architecture is aimed
towards maximizing the simultaneous operation of 1/0, control, and processing to achieve
real time throughput. The system can be extended to incorporate more than four
processors if necessary.

Buses represent shared CE modules. Communication between PE modules pairs using
shared buses proceeds one at a time, and as a result, the degree of concurrency in
communication that is possible in such systems is reduced in comparison to that in
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systems possessing fixed interconnection structures. However, the number of buses
typically employed in a system is small compared to the number of dedicated links
employed in a fixed interconnection structure. Therefore it is possible to provide high
speed buses with larger bandwidths than provided by dedicated links. The overall delay
introduced due to communication may be reduced in some instances to a level comparable
to that of a fixed interconnection structure executing similar operations.

3.1.3 Reconfigurable Interconnection Structures

Complete interconnection (every PE module connected to every other PE module
through dedicated links) is provided by the crossbar interconnection network. However
its cost grows as the square of the number of PE modules and at present, rapidly becomes
infeasible (in terms of cost) for large numbers of PE modules. Reconfigurable
interconnection structures have a cost that grows as O(Nlog,N), where N is the number of

PE modules, and the networks are built with txt crossbar switches (t is typically equalo
two). However, these networks do not provide all possible interconnections between
processors. The ability to reconfigure the system to provide the most efficient hardware
organization for a given task enables these structures to adapt to a wide range of
processing needs possessing diverse communication requirements. Additional flexibility is
achieved by being able to partition the interconnection structure into groups of
independently operating PE modules.

The block diagram of the PASM [38] (Partitionable SIMD/MIMD) computer system,
which is being developed at Purdue University, is shown in figure 11.
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Figure 11: Block diagram of the PASM system

The parallel computation unit contains N processors connected to N memory modules
through an interconnection network. N is typically a power of two. A PE module here
refers to a processor-memory module pair. The micro controllers consist of
microprocessors, each of which controls a set of PE modules. Therefore each
microcontroller can control an independent SIMD process being executed by the processors
under its control. If the microcontrollers are provided with differing instruction streams,
MIMD mode of operation results. The independent operation of the controllers allows
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multiple SIMD processes to take place. The interconnection network is a multistage
switching network with distributed control. This network can be partitioned into
independent subnets of PEs facilitating the concurrent operation of independent MIMD
and SIMD processes. This network also supports automatic rerouting around busy or
faulty network switches and fault tolerance through redundant paths for frequently used
permutations. The memory management system employs a double buffering technique to
minimize delays in transfers to and from secondary storage. The system control unit is
responsible for the overall coordination of the activities of all the components.

A second architecture being developed at Purdue University is the PUMPS architecture
for pattern analysis and image data base management [39]. This architecture has been
designed to meet the needs of image processing as well as the management of large image
data bases. A block diagram of the system is shown in figure 12.
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Figure 12: Block diagram of the PUMPS system

It consists of a set of task processing units (TPUs), connected to a shared memory (SM)
via a block oriented interconnection network (PMIN). The TPUs communicate over a bus
and share a common cache memory. The TPUs are connected through a special resource
arbitration network to a shared pool of peripheral processors and VLSI units (PPVUs). A
pipeline of PPVUs can be configured under the control of a TPU to perform a specific
image processing task. This organization allows convenient addition of special purpose
hardware. In addition, the TPUs can operate independently in a MIMD mode. This
system has a combination of fast but dedicated low level special purpose architectures in
conjunction with more powerful and flexible but slower general purpose processors. The
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memory organization consists of a local cache memory in each TPU along with some
additional slower local memory. There is also a large cache memory which is shared by all
the TPUs. The next level of storage is a shared primary memory and finally a file system
on which the database is stored. The file system is connected to the shared memory
through the backend database management network. Ideally, multilevel memory
hierarchies yield performance of the fastest level at a system cost proportional to the
lowest level. The memory management function is distributed over the entire system in
order to let the TPUs spend more time on useful computation. Interactive file editing and
manipulation capabilities are provided by the frontend communication processor.

A block diagram of the PM? system [40] which is also being developed at Purdue
University is shown in figure 13.
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Figure 13: Organization of the PM? system

The system contains two types of PE modules - Vector Control Units (VCU) and
Processor Memory Units (PMU). The former operate as controllers of an SIMD process
executed by a set of PMUs. Each VCU controls a set of PMUs. Therefore, each VCU, in
a manner similar to the microcontrollers in PASM, can control an independent SIMD
process. The VCUs can execute different instruction streams to operate in MIMD mode.
Combinations are possible resulting in distributed mixed modes. The memory has a
hierarchical organization consisting of three levels. The highest level is the local cache
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memory in each PMU and VCU. The next level consists of the shared memory modules
followed by the file storage system at the lowest level. A distributed multiprogramming
operating system is being designed for this system. Also an interconnection network for
the PMU and shared memory modules is currently being investigated [40].

An architecture for the efficient implementation of algorithms requiring real and
complex arithmetic, frequency domain processing of images for example, has been
proposed in [41]. A block diagram of this system is shown in figure 14.
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Figure 14: Block diagram of a microprogrammable vector processor

It consists of four floating point processors controlled by a vector control unit. Each
processor consists of a floating point adder, a floating point multiplier and local memory
interconnected by a flexible bus system allowing concurrent operation of the adder and
multiplier. A crossbar network provides the interconnection between the four processors.
This vector processor is provided with auxillary memory with which it communicates
through an I/O processor. The system operates in a SIMD mode. This architecture is
efficient for the processing of large arrays of data. Examples have been presented [41] for
performing the FFT and FIR filtering. The crossbar network is used for the exchange of
intermediate data. This allows some pipelining of sequences of vector operations. The
whole unit is attatched as a peripheral to a host PDP 11/45.

The systems in this section employ interconnection networks consisting of a number of
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CE modules. Through various control mechanisms, these networks can be partitioned into
independent subnets allowing groups of PE modules to function in MSIMD and MIMD
mode of operation. In addition, the feature of reconfigurability enables adaption to
various computing structures and data flow requirements. In this manner these systems
appear to offer enormous potential for satisfying a wide range of processing and
communication requirements.

3.2 Functionally Dedicated Architectures

The extremely high chip densities afforded by LSI and VLSI technology and the
associated drop in hardware costs are two significant factors that have contributed to the
development of functionally dedicated architectures. In addition, the smaller physical
sizes and reduced problems in power and heat dissipation [42], have made them attractive
for many applications; real time graphics simulation for example. For a specific problem,
it is possible to obtain the required amount of processing logic at a lower cost and
packaged in smaller physical volumes.

From an overall system viewpoint, the control and communication requirements of an
image processing system based on dedicated functional modules are different from those of
general purpose systems. In general, the majority of the communication is for the transfer
of data to and from functional units. Cooperation between processors for performing a
given task is significantly reduced. Synchronization between processors is mainly for the
purpose of initiating and terminating functions, and coordinating data transfers. This
simplifies the design of the interface between the various functional units. In such an
environment little is to be gained by dynamic hardware reconfiguration capability; hence
the lack of such systems. These architectures focus on optimizing performance at the
functional module level. This may be at the level of individual image operations, e.g.,
convolution, or groups of operations constituting an image processing algorithm, such as
edge detection, or a set of algorithms corresponding to a specific processing environment,
as in real time object tracking. In such systems, units that per form computations within
a PE module will be referred to as PE cells.

In exploiting VLSI technology it should be noted that the metrics for implementation in
VLSI are different from those employed in conventional systems. Excessive
communication, long communication paths, or irregular communications degrade
performance [42]. As a result, two approaches have evolved in exploiting VLSI
technology. The first approach is to map algorithms directly onto silicon . The flow of
data through the system is completely defined apriori and the PE cells themselves are
optimized for high performance. The second approach involves utilizing a few different
types of cells interconnected in a regular pattern. Typically several data streams flow
synchronously through this network, interacting at the cells where they meet. Thus
extensive use is made of pipelining and parallel processing. Exploitation of such a
structure necessitates careful design of algorithms to produce regular communication
patterns and require only a few different types of operations. Examples of architectures
with optimization of performance at all the three levels identified above, are described in
the remainder of this section.

3.2.1 Fixed Interconnection Structures

A systematic study of applying LSI and VLSI technologies to image processing has been
conducted by Nudd [11]. The primary design goal was to provide hardware for
performing specific image processing functions at video rates. Towards this end, the first
approach, i.e., mapping algorithms onto silicon, was adopted. Certain commonly used low
level image processing functions were selected as LSI primitives and LSI circuits were
designed to perform each of these functions. A functionally distributed architecture was
proposed using a single LSI module for each functional primitive and is illustrated in
figure 15. Complex functions are realized as combinations of these primitives. Decision



18 S. Yalamanchili et al.

INPUT IMAGERY

1 , !
p )
N\
[¢] (o] 0
p
0] 0]
0] o 0
FEATURE
EXTRACT/ION
DATA
MEMORY v
HIGH-LEVEL / SYMBOLIC
PROCESSOR CLASSIFICATION
INTERACTION OUTPUT
L00P DECISIONS v

Figure 15: Functionally distributed architecture
based on LSI primitives

making and semantic interpretation is associated with a higher level process characterized
by low throughput requirements and decreased data rates. In exploiting VLSI technology
for the same purpose, Nudd has analyzed some representative systems such as a line finder
and a texture analyzer to determine commonality of function. A 5X5 convolution was
determined to be a widely employed function and hence was selected for implementation.
A design for this chip based on residue arithmetic has been formulated. This approach
presents a very modular and regular design, particularly important for VLSI
implementation. This chip [43] is now being fabricated and tested. The next stage will
involve the development of a local area logic processor to complete a VLSl image
processing system structured around 4 chips.

The second approach of employing regular arrays of simple cells is typified by the
systolic processing approach pioneered by H. T. Kung and his associates at Carnegie
Mellon University [44-46]. The basic idea of this approach is to match the computation
rate to the I/O bandwidth of the system. Little benefit is derived from possessing
processing power in excess of the maximum rate at which data may be acquired.
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Therefore in scenarios where data accesses are costly, it is necessary to maximize the use
of data fetched from memory or acquired from any other source, such as a sensor. The
systolic approach makes use of extensive pipelining and parallel processing in a framework
that satisfies the constraints of VLSI implementation. The basic principle is

Memory
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Figure 16: Basic principle of the systolic
approach to computation

illustrated in figure 16. The computation throughput is increased six times while the
memory bandwidth is constant. Alternatively the memory bandwidth requirements can
be reduced for a given computation rate.

As an illustrative example consider one dimensional convolution. A systolic cell and the
computation it performs on every clock cycle is shown in figure 17. Now consider a set of
numbers {x;}, i=1,..,n, to be convolved with a set of weights, {wj}, j=1,...,3, to produce

an output sequence {y,}, k=1,...,n. This may be accomplished by using a linear array of

three cells as shown in figure 18 with the weights preloaded as shown. Opn each successive
clock cycle the x; are input at the left and flow from left to right in figure 18, while each

cell performs its computation. The output values are delayed by three clock cycles and
also flow from left to right but at twice the speed. After a fixed delay the output values
are available at the output of the last cell every successive clock cycle. Once an element
is fetched from memory, all the partial products that may be produced with this element
in the course of a computation are computed. These are then accumulated in different
ways to produce the corresponding output values.

Different implementations are possible by employing more complex cells and varying
patterns of data movement through linear and higher dimensional arrays. Systolic designs
for two dimensional convolution [47-48] and template matching [49] have been developed.
These typically employ either a linear array or a two dimensional mesh connected array of
cells. It should be pointed out that these arrays possess specific advantages for image
processing [50]. Arrays can be tailored to match the data acquisition rates from the sensor
for real time operations. In addition many low level processing functions are typically
repetitive and the operations are defined independent of the data, i.e, there are no data
dependent branches in the algoritbhm. The small number of different types of operations
and the regular computations makes them suitable for VLSI implementation. A 20 cell
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Figure 18: Example of one dimensional systolic convolution

systolic array is currently being developed by ESL Inc., San Jose, CA. This array can be
attached to a host VAX 11/780 and has a peak projected computation rate of 200 million
operations per second.
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Another field that has benefited from the VLSI implementation of image processing
functions is high speed graphics. Applications such as real time graphics for flight
simulators require high computational throughput. Generation of real time graphics
typically involves the following functions: transformation of a scene description in terms of
an object centered description to a viewer centered description, clipping into the field of
view, perspective scaling, lighting calculation, visible surface calculations and pixel
coloring. With the exception of the first operation, all the others are performed at each
pixel and the high resolution required in the generation of real world scenes poses a
formidable computational burden. Fuchs et. al. [51] have designed a pizel plane
architecture to satisfy the computational requirements of real time graphics. The basic
idea involves enhancing the architecture of a standard display memory which would be
normally used for storing an image, by incorporating some additional logic into each pixel
storage location. Calculations at each pixel may now be performed in parallel. These pixel
planes perform almost all of the image related processing but the total silicon area
required is only approximately twice that of the bitmapped display memories implemented
using RAM chips [51]. Again, the regularity and use of a single basic cell type makes them
amenable to implementation in VLSI. An alternate approach due to Fussell and Rathi is
described in [52].

Sternberg [53] has proposed a serial array processor called the cytocomputer, based on
neighborhood transformations. The heart of this structure is a neighborhood processing
unit (PE module) that performs a fixed function; computing the output pixel value as a
function of the values of a fixed neighborhood around and including the input pixel. For
an image that is supplied in a raster scan manner, a linear shift register is used to perform
a raster to window conversion. This presents a neighborhood of a pixel to the processing
unit.
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Figure 19: Single stage of a cytocomputer

The organization of a single unit is shown in figure 19. This has been optimized for real
time image processing, and has been developed and is operational at the Environmental
Research Institute of Michigan. A second generation cytocomputer employing custom LSI
technology is currently being developed [54].

Special purpose hardware optimized to perform fixed functions at high speeds is one
approach towards achieving the real time capability important for the tracking of moving
objects. The development of one such real time automatic tracking system is described in
[65]. The system was designed based on the premises that fine tuning of parameters
would not be possible in real time and excessive management of data would require too
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Figure 21: A distributed pipeline architecture for
real time image analysis

optimization at the level of an image processing algorithm is described in [57]. Here an
algorithm developed to examine a sequence of images has been analyzed to determine the
requirements of a multiprocessor implementation that provides real time performance.
Based on the results, a dedicated multiprocessor organization was designed.

The advent of charge transfer technology sensor arrays stimulated a great deal of
interest in focal plane architectures. These are architectures integrated into the sensor at
the focal plane. Charge transfer technology holds promises for image processing for a
variety of reasons [58]. Low power requirements (two orders of magnitude lower than
conventional bipolar devices) and smaller device geometries make highly parallel
approaches feasible. Performing processing directly in the charge domain, results in
greater accuracy, linearity and larger dynamic range. All these factors combine to provide
increased sensitivity. These and other potential advantages are spurring the development
of focal plane architectures. Systems using such arrays and fast bit slice microprocessors
are being developed to implement simple tracking algorithms. A typical aproach is to
window the target, threshold the image and process the resulting binary image. Tests on
systems using a 100X100 charge injection device array developed by General Electric and
a 16 bit microprocessor lend credibility to this approach [59].

An automatic target cueing system integrated into the focal plane is being developed by
Westinghouse Corp. [60]. A preferred set of algorithms have been evolved which are now
being investigated for charge coupled device implementation. This would result in a
special purpose but extremely fast architecture for target tracking. The low cost
implementation makes special purpose focal plane architectures attractive in spite of their
relative inflexibility. The CE modules in these systems are dedicated links between
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modules and are therefore in some sense, degenerate. Control of such systems is
conceptually simple, being mainly concerned with the coordination of the flow of data to
and from the individual modules.

3.2.2 Bus Oriented Structures

Functional modules can be specialized to perform complete image processing tasks. In
this case, it would be desirable to share them by providing direct access to any of these
modules from a host computer. Several bus oriented systems provide this capability.

A system for the real time acquisition and analysis of sequences of X-ray images is
described in [61]. A block diagram of this system is shown in figure 22.
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Figure 22: An image processing system for the
analysis of image sequences

This system is meant to be an interactive user guided system for clinical applications. In
this context, real time implies that the system is as fast as required for convenient
interactive analysis. The actual processing of images themselves is limited for the most
part to simple unary transformations since the emphasis is on convenient display of images
for easier visual interpretation. Most of the effort was concentrated on the problems of
real time acquisition, digitization and storage of data (on the RTD and RTA bus in figure
22). An important requirement of this application is the ability to add new special
purpose processors in a simple fashion. This, along with an interactive capability, has
prompted the choice of a bus oriented system. Similar considerations have led to the
adoption of a bus oriented architecture in an environment where it is necessary to handle
large amounts of high resolution images for diagnostic medicine [62]. The majority of the
design effort is focussed on efficient manipulation of images since the environment is
primarily interactive and in comparison, small amounts of processing is required.

A time shared bus forms the basis of the PICAP Il image processing system being
developed at Linkoeping University, Sweden (figure 23) [63-64]. In designing this system
some of the goals included a modular open ended architecture, high speed, and an
interactive multi-user environment. Each of the processors is specialized to perform a fixed
function: linear and non-linear filtering and segmentation, being typical examples [65].
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Figure 23: Organization of the PICAP II system

Functional units can be added on as desired upto a total of 16 modules. A picture data
base is provided for long term storage. A picture memory is provided for storing the
intermediate results during the processing stage [66]. The complete system provides a wide
range of facilities for image processing on an interactive basis. Each user has a virtual
machine available, as shown in figure 24. The user may operate on any of the images
stored in one of the picture registers using the special purpose processors and can then
store the results in the data base or have them displayed. Software developed for PICAP
II includes PPL, a language developed to reflect the structure of PICAP 1II.

Another system developed along similar lines is described in [67]. Unlike PICAP 1I it is
not a complete stand alone system. This architecture is proposed to be aimed at the
lowest level in a multilevel hierarchy. The organization is shown in figure 25. Here
functional modules are tailored to perform a set of low level image processing functions.
For example, the edge detection unit is a realization of a 3X3 Sobel operator. The edge
detector is implemented as a four level tree and can compute the Sobel gradient
magnitude at a point in 240 nanoseconds. The modules operate on an image stored in a
common memory. This image can be accessed in fixed size blocks by any of the modules
over a 64 bit bus. The output of these processors would proceed to the memories of the
next level of processors. Considerable effort was spent on the design of the shared
memory so that arbitrarily placed square blocks of fixed size (side of the square being a
power of two) could be accessed in parallel.

Considerations that arose in the context of general purpose bus oriented systems are
applicable to the systems described in this section. In addition, it has to be noted that
inter PE module communication is not as important, since it is not necessary for PE
modules to cooperate in performing an image processing task. Communication mainly
consists of the transfer of large blocks of data. Hence high speed bus structures may be
particularly advantageous, in terms of cost, feasibility, and performance.
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Figure 24: Virtual machine presented to the
programmer on the PICAP II system

4 Performance and Reliability Issues

In general, the impact of the organization of PE and CE modules on system performance
and reliability is a complex and diverse issue. In addition to addressing several issues of
interest in an image processing context, more general issues are also presented wherever
deemed appropriate.

4.1 PE Module Considerations

Performance issues related to the PE modules assume special significance when dealing
with functionally dedicated modules. Kung [68] has evaluated the implications of
implementing algorithms in VLSL In addition, Nudd [11] has reported performance figures
ranging from 80 K Operations/Second for the edge detection operation, to upto 10 Million
Operations/Second for convolution using CCD/MOS circuits. . Similarly, considerations
related to fault tolerance are important in the functionally dedicated PE module case.
Since the architecture is implemented on a single chip, the question of replacing faulty
elements does not arise. As a consequence, the fault tolerance issues tend to be different
when dealing with single chip architectures. Maximizing yield or minimizing faulty
elements is a dominant consideration since currently, the size of a chip is limited by the
probability of a fatal production flaw occuring within it. This probability factor grows
exponentially with the area of the layout [69]. Several groups have addressed this problem
in general [70-71] and in image processing domains in particular [25]. Typical solutions
strive to provide means for dynamic rerouting of data inside the module to avoid pockets
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of faulty locations. It has been observed [70] that to this end, a two dimensional near
neighbor mesh is a particularly convenient layout structure. Recent proposals aimed at
embedding interconnection structures in a single chip [72] are also bound by similar
reliability constraints.

4.2 CE Module Considerations

A wide variety of parameters have been proposed to characterize and classify various
interconnection schemes [13-14,73-77]. One such proposal recommends modularity,
connection flexibility, cost of fault tolerance, bottlenecks in communication, and logical
complexity as possible measures for comparative evaluation [13]. In contrast, Siegel et.al
[14] have proposed a class of measures which are relevant when reconfigurable
multiprocessor systems are considered. The parameters considered by them include
partitionability, homogenity, LSI compatability and related measures. Lipovski et.al [74]
have proposed a graph theoretic basis for modeling and comparing multicomputer
interconnection networks. A rent factor has been introduced for network assessment
which includes the time during which shared reusable resources are unavailable to
contending processes. The more traditional complexity and delay factors have also been
included. Franklin [72] has observed that while bandwidth and switch complexity [75] are
valid and important issues in an environment where switch element costs override link
element costs, these assumptions are not consistent when entire networks are implemented
on a single chip. The area occupied by the link elements assumes significance in the latter
case when the link and switch elements share a common wafer surface. Wittie [77] has
proposed average message delay, message densities in a link of the network, worst loss
in the event of a single point failure and related factors for characterizing and evaluating
a variety of interconnection strategies involving large numbers of standard computer
modules.
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4.2.1 Fixed Interconnection Structures

In the class of fixed interconnection structures the following three categories are
considered: near neighbor meshes, rings and pipelined structures. These structures
account for the majority of the interconnection schemes employed in the architectures

discussed in the previous section.
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Figure 26: Near neighbor mesh with end around connections

The regular structure of a near neighbor mesh (figure 26) supports simple message
routing techniques. It can be shown [77] that the average message traffic density per link
in a D dimensional mesh with W elements per dimension (N=W nodes in a cellular array
since D=2) equals W/{4. Also, a two dimensional mesh with N nodes and rectangular
tesselations requires 2NN link elements assuming end to end connections. In addition, the
regularity of the mesh yields a certain degree of fault tolerance since a single fault does
not cause a total loss of communication. However, severe irregularities could result in the
routing algorithms as a consequence of local fault pockets. For efficient operation, the
majority of the communication should be confined to local areas of the mesh.

Ring structures are represented by a closed loop where any node ¢ in the loop is
connected to and hence communicates with it’s neighboring nodes (i+1)mod N and
(i-1)mod N. The routing algorithms are very simple in this case since a given node of the
ring can communicate with either neighbor in a regular fashion (compare this with figure
26 for a near neighbor rectangular mesh in two dimensions). The average message traffic
densities per link during a time unit approaches N/2, and the average message delays
grow linearly with NN, the number of nodes in the ring which is configured as a
unidirectional loop [77]. In general, a fault at any point results in disconnecting the ring
structure and therefore tends to be catastrophic. Redundant paths have to be established
if a degree of fault tolerance is to be expected of these structures. Zafiropulo [78] has
evaluated alternate techniques for improving reliability in a ring configured as a loop.
Finally, the link complexity of a ring grows linearly with /N the number of nodes in this
loop. The Gatlinburg ring structure, a specalized hierarchy of multiple rings [79] is a
typical example of a complex interprocessor communication scheme with rings as
fundamental elements.
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A typical N stage pipelined system consists of the output of level ¢ serving the input of
level i+1. Pipelining is an extremely efficient approach both from the performance and
resource utilization viewpoints. However, it's implementation grows in complexity except
in situations where the precedence graph representation of the particular operation is fully
determined apriori. Since the flow of information is regular and controlled in a pipelined
system, routing procedures are implicit and simple. However, varying routing patterns
requiring variable length or reconfigurable pipelines pose severe problems especially when
the various stages of the pipeline function in an asynchronous fashion. While conventional
message density and link counts are not meaningful in the context of static pipelines,
reliability remains a critical issue. A faulty link at any point along the length of the
pipeline results in fragmentation. Redundant links can solve this problem. Ramamoorthy
et.al. have surveyed the advantages and needs of pipelined units in considerable detail
[80]. The issues related to dynamically reconfigurable pipelines have been addressed by
Vick et.al. [81].

4.2.2 Bus Interconnection Structures

Both single global bus and multiple bus structures have been used for connecting
ensembles of processors and memory units (PE’s). Here, the memory units in addition to
serving as storage media, also function as common locations for information exchange.
Information or message routing is very simple and is commonly accomplished through a
memory mapped scheme. Sytem expansion is accomplished through the addition of PEs
to the bus at the cost of degraded bandwidth. Contention for the shared bus becomes an
important problem and several solutions strive to resolve this contention; for example the
Fast Time Shared Bus proposal for the PICAP II system [63-64]. Thus, expanding the
system bandwidth affects bus design considerations considerably. In general, a single fault
is sufficient to cause bus fragmentation. However, the cost of the interconnection structure
remains a constant for a given bus.

4.2.3 Reconfigurable Interconnection Structures

The crossbar switch is perhaps the earliest interconnection scheme used for inter PE
module communication in restructurable and partitionable multicomputer systems. In
order to connect N input nodes to an equal number of output nodes, a crossbar network

requires N? switching elements with a delay equal to one level of switching. Later
proposals, while reducing the network complexity, introduced additional delay into the
communication [14]. These proposals became increasingly optimum in a cost sense as NV,
the number of input and output nodes, grew large. In general, these interconnection
schemes require multiple levels of switching between the input and the output node sets.
This fact emphasizes the need for efficient routing techniques in this case for good
performance.

Chow et.al [82] have reported the development of optimum routing methods for some
reconfigurable interconnection networks. They have observed that while a variety of
routing algorithms have been proposed in the past [83-86], these techniques either require
extremely large memory or large amounts of processing time during backtracking. It is
claimed that their technique requires less memory and supports synchronous and
asynchronous routing. Finally the presence of multiple communication paths at a given
switch in the network requires that the routing scheme be capable of handling congestion
problems dynamically. Wu et.al [87] have addressed these issues in the context of the
hypercube interconnection scheme.

An important characteristic of this class of interconnection networks is the ability to
partition the resource set into discrete subsets functioning independently in MSIMD,
MIMD and SIMD modes of operation. Thus, operational states involving parallel
operations on multiple images become feasible in an image processing context. Fault
tolerance and related issues of the Adaptive Data Manipulator network have been
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reported by Siegel et.al [88]. Typically, delays for these multistage networks for end to end
communication, grow in proportion to the depth as Oflog, IN) while the cost in terms of

the switch and link complexity is O(IV log, IN).

4.2.4 Comparative Evaluation

Kushner et.al [89,32] have compared the performance of the MPP ( near neighbor mesh)
and ZMOB (a ring interconnection system) for a class of frequently used image processing
functions including: (1) iterative local operations, (2) histogramming, (3) Co-occurrence
matrices and (4) two dimensional transforms. Also Kushner [32,89-90] has compared the
performance of each of the above configurations to that of a system using switching
networks for inter PE communication. For purposes of uniformity, it was assumed that
the switching network case utilizes PE modules driven by a host computer through a
unibus. Typical expressions representing the computational delay for an iterative local
operation are indicated in Table. 1 for each of these configurations.

Table 1
System Time for the tterative local operation
ZMOB 2rNZ + (4n+4)nsP + nZmC
MPP 2rNZ + (4n+4)mip + nZmC

Switching Networks 2rN? + (4n+4)ms2log,P + nZmC

Number of pixels in a column of a square image
Number of processors

Time to compute one local operation

Number of pixels in one column of the square
image partition assigned to one processor
Number of iterations of the local operation
Time to pass one pixel over the unibus

Time to pass one bit between adjacent
processors (MPP)

Number of bits/pixe!

Single stage pixel propagation delay

o0 T=E

© 13 3
[ |

5 Concluding Remarks

A wide range of image processing architectures have been surveyed in this paper. A
taxonomy which focuses on the communication and computational aspects of a generalized
model of an image processing system, has been proposed. This approach leads to a
hierarchical classification of image processing architectures based on the nature of
processing elements (PEs) and interconnection networks comprised of communication
elements (CEs) for inter PE communication. Several representative architectures
belonging to each class were subsequently described. Typical characteristics of each
architecture were emphasized with the intent of highlighting the distinction between



Image Processing Architectures 31

classes. Finally, the performance and reliability characteristics of each class of the
taxonomy were discussed.

It is possible to establish certain relationships between low level and high level image
processing tasks and the architectural classes described earlier. A majority of low level
processing algorithms involve independent point and local operations over an image and
are thus amenable to highly parallel implementations. The diversity in the type of
computations, and in the communication requirements of these operations is, in general,
small. In addition, the communication requirements of algorithms at this level are fairly
well understood and are generally characterized by regular patterns. Thus, architectures
employing functionally dedicated modules and fixed interconnection networks are
attractive choices in this context. Architectures developed for low level processing reflect
these observations [11,42,43, 45-55,57-60,63-67].

When image processing tasks are implemented in a dedicated fashion as in the
implementation of edge detection modules [67], communication with the environment is
limited to regular block data transfers. Thus, the use of functionally dedicated PE
modules restrict the variance in communication requirements from the point of view of a
host. Therefore in such environments, a bus interconnection structure offers a cost
effective solution. These observations suggest the evolution of systems employing several
dedicated implementations of low level operations centered around a global bus.

The feasibility of developing highly parallel systems of functionally dedicated PE
modules for low level image processing has been enhanced with the advent of VLSI
systems. While decreasing device sizes have resulted in improved speed and cost functions,
several new problems had to be contended with. Firstly, this evolution of technology led
to significantly altered optimization criteria which in turn have affected the design
process. In exploiting VLSI technology, a large number of PE cells could be encapsulated
in a module to provide the high throughput rates required of low level processing.
However, the accompanying I/O problem due to pin-out constraints imposes restrictions
on the corresponding range of problems which can utilize such solutions. Also, the impact
of the layout geometry on performance increases with decreasing device sizes and thus,
plays a critical role during the chip design process. Therefore, systematic system analysis,
synthesis and verification procedures become intractable soon. Increasing system design
and verification costs are a direct consequence of these factors which tend to offset the
advantages gained through reduced device geometries.

Perusal of the issues summarized above suggests the need to automate the various stages
of the design and verification processes if lower system costs are desired. This need has
been recognized, and as a result several independent research efforts have produced
various automatic placement routing and partitioning techniques for VLSI chip layout and
design. It seems likely that further research will be directed towards developing
compilation techniques which would yield silicon embeddings of algorithms based on
procedural descriptions of the function.

High level operations possess contrasting features. Currently, algorithms are. developed
based on relatively complex models of scene analysis and human vision. The diversity in
the types of computations performed at this level is large. In addition, the process of
detecting and exploiting parallelism at this level is not well characterized and is therefore
an area of current research. In general, the variability in the communication requirements
of parallel high level algorithms is large. This large variability in computation and
communication requirements suggests that flexibility is a necessity, implying the need for
programmable PE modules and reconfigurable interconnection structures.  These
observations are reflected in the architectures developed primarily for high level image
processing[12,16,20-22,36,38-41].  Typically these systems possess a large degree of
flexibility both from a computation and communication point of view. However, with
such diverse processing requirements, mismatch between the processing requirements of
the algorithm and the solution offered by the host architecture may be relatively high.
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These facts point to the need for determining strategies for effectively matching problem
classes with reconfigurable systems. Therefore, it is important to identify classes of high
algorithms with similar computation and communication requirements. This
understanding will further the development of dynamic run time systems for optimally

level
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mapping these problem classes onto the underlying architectures.
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INTRODUCTION

The motivation for improving computatioria! efficiency is the need to process an ever growing amount
of information. This is particularly true in fields like image processing and pattern recognition where a
large number of sensors are continually gathering information from the earth and the skies (remote
sensing), biomedical sources (computer tomography), industrial environment (robot vision), image

sequence analysis ( at TV rate), etc.

For this reason the interest in performing very fast computations on large sets of structured data (
such as digital images) has increased in recent years. The problem of augmenting throughput must be
solved by designing new computer architectures that exploit parallelism of some kind instead of simply

improving the efficiency of present sequential machines.

These new architectures give rise to new problems in the areas of interprocessor communication ,
memory contention, synchronization and overall reliability. On all these issues current research is
active, generating a large number of papers and international meetings [34] [35], both in the field of

scientific computation and in image processing.

On a more abstract level, computational models provide a general description and interpretation of

information flow and control that takes place in a given class of machines.

It seems appropriate to explain both terms (computation and modei) since they invoive a large number

of concepts, which are in most instances difficult to formalize.

The word "model" generally reminds us of an analogy between a real situation and an "imaginary
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machine” which depicts such a situation [11]. The analogy may be of phisycal nature (an orange to
model the sun) or it may be more abstract, namely, of a relational nature. In this last case the
relationship among the variables in the situation is preserved in the proposed model. Frequently such
models are a crude approximation to reality and therefore the non-significant details are ignored in
order to highlight the important features. This is done for two reasons: a) to deeepen the understanding
of the situation one is trying to model and b) to build a tool that may also have a predictive potential for

different instances of the same situation.

Strange as it may seem, both scientific and magic attitudes bear a close resemblance from the point of
view of the mode! builder. They are both embodiments of knowledge models in much the same way as a
politician believes and operates in an ideological model in which he "lives". It may often happen that
reality is completely substituted for the model which amounts to living in the model instead of being an

observer of the model.

Understanding is an interactive process between the observer and the reality; the model is an
intermediate reality, one that may be more easily grasped. If a first model is refined, the closeness to the
real situation will be reinforced but its complexity will also be increased:; this suggests the search for a

tradeoff between accurateness and sophistication of the model.

As for the second term, computation, we denote by it a process by means of which a mapping is
performed between the elements of two structured sets (domains), one corresponding to the input and
the other to the output. In the case of image processing both the input and the output will be sets of
structured data of equal size made of elements called pixéls; in the case of image analysis and pattern
recognition the output will be a description which may be either a list of primitives or a set of names
assigned to the objects present in the image. The computation is achieved by a system which has

resources of different kinds: processors, memory and time.

The availability of many processing elements and their local memories, made possible by the
development of VLSI technology, suggests a wide number of configurations, both static and dynamic,
and this has resulted in the implementation of a number of different computational systems, The
features of such systems and their classification acccording to the way they match the data structure
(image) or the computation to be performed (algorithm) have been recently discussed in [7]. In order to
start from the begining we will now proceed to briefly review some classical models for computation

which will shed a light on the major aspects of parallel processing in pictorial data systems.
MODELS
Basic definitions

A formal definition of a parallel computational model may be given in terms of two crucial
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components, the control structure and the interpretative capacity, which act in a manner similar, but not
equivalent, to the syntactic and semantic description of programming languages.

The control structure may be defined as

C=(Q,8,%8,F)

where

Qs the state space (not necessarily finite) containing states g
§:QXZ--Q is the transition function

3 is the alphabet of operation symbols

S € Qis the start state

F ¢ Qis the set of final states.

The transition function is a partial function, meaning that only some transitions are allowed to occur

since not all states can start a transition.

When an operation is executed, 8(q,0) determines the new state: furthermore, an initial state S exists,
and the computation ends whenever a final state belonging to F is reached. The computation can be

seen as a sequence of operations [P N and a sequence of states qio,...,qin such that
i) Q= 0
iii) 8(qik_1,uik)= e 1<k<n
iy aq, €F

The set of all the computation sequences for a control C is called its computation sequence set L(C).

CELLULAR AUTOMATA

Two-dimensional networks of finite state automata are known as cellular automata and were
introduced as a model for self reproduction. in the pattern recognition field, such automata are
employed to detect specific configurations. This process is accomplished by using the information local
to each automaton (performing in a way similar to a myopic eye) and by a set of transition rules that

allow state transformations of the automata.
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A two dimensional cellular automaton (Fig. 1) is a rectangular array of cells, each one having four
neighbors (upper, lower, left and right) except at the edges of the array, in which case either three or
two neighbors exist according to the position of the cell (corner or side, respectively). Each cell of the
automaton changes state according to a set of transition rules which consider the state of the cell and
those of its neighbors. More formally, for the set of states Q the corresponding § will map a state

quintuple into one of a set of possible states, i.e.

& 1 QxQxQxQxQ ---- 29

1L

FIG.1

Whenever the input state and the transition rules are known the final state is unique and cellular
automaton is deterministic. Non-deterministic cellular automata may also be considered in which the
transition function defines for each celi not a unique new state but a set of new states. Non-
deterministic cellular automata are useful for the analysis of the computational complexity of algorithms

in NP-completeness theory.

Each cell of the automaton performs a transition according to a rule which is common to all cells;
such a state transition takes place simultaneously in all cells so that the operation mode is

synchronous. The transition rule is equivalent to a single instruction executed on a iterative array.

A powerful model, which consists of many cellular arrays stacked to form a pyramid like structure, has
been introduced in order to reduce the complexity of many algorithms. Each cell in a layer of the
pyramid can communicate not only with its neighbors on the same layer but also with its parents on the
next layer towards the apex of the pyramid and with its children on the next layer towards the base of
the pyramid. In Tanimoto’s pyramid, for instance, each cell is connected to four sons and one father so
thatin total it has thirteen connections involving elements of three successive layers.

If n is the base array diameter the height of the pyramid is O(log n); this ensures that many operations,

such as counting etc., require a time O(log n), a good advantage over the O(n) time required by a simple
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cellular array.

In cellular automata the interconnection scheme may also be of an irregular nature, allowing any cell
to have a variable (but bounded) number of neighbors; such an automaton, which reflects a graph
structure with the nodes corresponding to the cells and the arcs corresponding to the interconnections
between cells, are called graph cellular automata. The compactness of a graph structure representing a
set of intercommunicating cells may be measured by the diameter and the degree, which should be
small and large respectively. The minimum number of nodes which must be traversed to reach a node
from any given node is called the diameter of the graph while the maximun number of nodes adjacent to
a given node is called the graph degree. For a detailed discussion of different possible groupings of
processors both on the plane and in space see [32]. Many important graph properties can be evaluated
by graph cellular automata in time proportional to the graph diameter. Many of the algorithms require
visiting all the nodes of the graph; for example, in order to count the nodes themselves or to detect
nodes which have a given label. This visit can be accomplished by fiking a node C as the starting one
and by traversing in some order (depth or breadth ) the other nodes, which are all at most O(diameter)

away.

An interesting graph cellular model is one in which the configuration is not fixed but may vary
according to the computational requirements. This is particular useful in image processing where the
structure of the image expressed in terms of regions and relations between regions varies from image to

image and also during computation.
COMPUTATION GRAPHS (DATA FLOW MODELS)

Let us now briefly introduce a model which represents a data driven computation. This model [13]
considers a labeled directed graph G =(V,E) whose nodes v represent computation steps and whose

edges e = (u,v) are the pathways for data and control.

More specifically, each arc e=(u,v) of the graph G has a quadruple (A,U,W,T) associated with it: A
stands for the initial number of tokens ( where a token is the data that enables computation) present on
the arc; U and V represent, respectively, the number of tokens added to (removed from) the arc when

the node v (u) executes its operation; finally, T is the number of tokens required to initiate the action of
v.

The sequence 'of data produced by any one node proceeds until it is totally consumed by another
node. A node is activated whenever all the necessary data have reached it. The flow of data drives the
computation in FIFO style. This model is deterministic in nature; that is the results of the computation
do not depend on the sequence of the computation steps among the enabled nodes. The weakness of
the model is that it does not allow conditional branching. This model, although particularly suitable for

recursive procedures,is rather cumbersome when handling input/output (and intermediate output) in
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converitional prograins.

As an example of a data flow graph modeling a computation, we may consider the case shown in Fig.
2in-which an algebraic expression is first "parallelized" and then executed on the nodes. Note that the
same information (data) may be necessary at different nodes, thus requiring 'copying nodes" (denoted
by "C" in Fig. 2). This example is originally from Gurd and Watson (1980) and may be also described by
a quadruple with Aij =0/1, Uii =1 ,Wi‘. =1and Tii =1.

K B cC D E I
KBCDE I
L
Y:=(K+C)/(B*C + D*E)
X:=B*C + D*E -E*(1+1)
+

X Y

Fig. 2

As another example, consider the Fourier transform, a fundamental operation for image enhancement
and restoration. The Fourier transform requires butterfly operations including sums and products of

complex numbers as in the following expression:
Xp=Ag + By "Wg-B "W,
X = A +B "W -B W,
Zo=Ag-B*Wo + B *W,

Z|=AI-BR‘WI-BI‘WR
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BRr B We| | W

FIG. 3

The corresponding data flow graph is illustrated in Fig.3.

ARCHITECTURES FROM MODELS

We have reviewed two abstract models which aim at describing and clarifying the nature of the
computation, as seen from the point of view of actions and control flow between actors. Such a model is
generally represented by a graph-like structure which interconnects the different actors and shows the

required inputs as well as the possible outputs from each actor.

Computational models have been shown to give some insight in the way in which information is
processed within a system which has a number of processors acting simultaneously and where the
configuration of the interconnections between the processors may change during the execution of the
task.

Within the area of pattern recognition and image processing a number of machines have been

developed which reflect the different computational approaches modelled in the previous section.

We will briefly describe representative machines for each one of the two classes so as to provide
some insight into the architectural structure of such machines. Finally some typical algorithms that are

well matched to these architectures will be discussed.
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As we shall see, the comparison of these machines in terms of efficiency is extremely difficult since, in

most cases, the computational efficiency is dependent on the nature of the algorithm. A recent
approach to analyzing the time dependency of a class of algorithms on a given machine is included

in [21]. The starting point is an algorithm grouping into "paradigms ". As an example, a paradigm
considers n=2" data items and a sequence of r=log n steps, each executable in parallel, with the
property that at each step each operand interacts with an operand adjacent to it on a specified r-cube

dimension.

Although some benchmarks may be defined in order to characterize the properties of the algorithms,
no absolute performance evaluation may be obtained, due to the relevance of such issues as: data
structures, input/output, local and regional operations, grey level manipulation, statistical operations,

etc.
SIMD ARCHITECTURES

The class of so-called SIMD ( Single Instruction Multiple Data) machines [9] can be modelled by the
above mentioned cellular automata. In a SIMD machine elementary processors are all executing the
same instruction on a set of independent data which is available to them. One processor, generally
called host computer, acts as a controlier of the whole system; it decodes the instructions and drives
the elements accordingly. Although many years ago a class of spatial computers had afready been
suggested [33], it is only recently that the available technology made possible the construction of

machines such as CLIP IV and DAP and ensured the feasibility of projects such as MPP, etc.
CLIP IV

The CLIP ( Cellular Logic Image Processor) [6] family of parallel computers , built at University College
London, represents the embodiment of a cellular automaton. CLIP 1V, the latest of CLIP series, consists
of ani array of 96x96 processing elements, each of which is connected to eight (or, as an option, six)
neighbors and has a memory capacity of 32 bits. An image from the video system is first converted and
coded as a 96x96 image and then each pixel is stored in a processing element as a 6-bit binary word.
Each processing element receives two independent inputs. The first input is the local value of the
image element and the second is derived from the output of the neighboring cells. Two outputs are
produced; one is sent to the neighboring cells and the other becomes the new image element value. A
clock cycle of 2 sec is typical of the MOS technology used in the CLIP 1V, but functions like propagation
of a signal from a cell to the neighbors take much less. Due to the limitation in memory capacity and to a
slow clock cycle only elementary binai'y operations are possible on CLIP IV. Moreover, this machine is

suitable for problems where repeated elementary local operations are to be performed.

DAP



Computational Models for Image Understanding 47

The Distributed Array Processor (DAP)[23] was not specifically designed for image processing
applications, but is capable of handling a variety of computing applications with high performance. It
consists of a two-dimensional array of 32x32 processors, each of which has a memory of 4k bit
associated with it. It is in many aspects similar to CLIP IV except that only 4-connectivity between
processors is allowed; it has a SMHz instruction cycle and lacks facilities for feature extraction. Any
image size or neighborhood size or number of bits per pixel may be selected due to the high memory

capacity and to the general purpose nature of the 32x32 processors.
RECONFIGURABLE ARRAYS

The fixed array size and the fixed nearest neighbor connections can severely limit the range of
processes that can be handled efficiently by cellular arrays. For some problems it is necessary for two
arbitrary processors to exchange data; although this can be achieved by passing messages through a
sequence of intermediate processors, this can slow down the process enormously. A reconfigurable

array can improve the situation drastically but at a relatively high price.

Considering the array of processors as a graph in which the nodes correspond to the processors and
the arcs to the interconnections between processors, a reconfigurable array may be represented as a

graph whose structure dynamically changes during computation.

In a reconfigurable array, processors are not hardwired together into a fixed graph structure but each

processor has attached a list of processors with which it can communicate directly [26].

Even if no existing machines implement a reconfigurable array, such an array may be simulated on an

existing multiprocessor architecture such as ZMOB [24].
PIPELINED ARCHITECTURES

In pipelined systems processing elements are arranged along a pipe, with a data stream traversing
each of the processing stages at fixed time intervals. Each processor is designed to perform a specific
function. After an initial delay due to the propagation of data through the functional units, called set-up
time, data are output at the same rate they are entered. In a broad sense, a pipelined machine can be
considered to operate as in data flow model, but instead of the data driving the process here an external

clock drives the computation; the clock is long enough to ensure proper propagation of data.

Pipelined machines are particularly appropriate when a computational process can be decomposed
into several subprocesses [5] each of which can be executed efficiently on specially tailored stages
which operate simultaneously with others on the same data stream, with the data arriving to each

processor with a constant delay. For a review of pipeline systems see [22].

Pipelined architectures represent one of the best solutions to image processing timing problems. The
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main advantage of the pipeline over the array architecture is in the low number of processors necessary
to perform a given task; in an array as many processors as there are pixels in the image are required,
which is often prohibitive in practice. In pipeline processors the input pixels are arranged in raster scan
format; in one cycle a pixel is input into a processor while another pixel is output by the same processor

to the next one in the pipe.
CYTOCOMPUTER

The Cytocomputer [16], built at the Environmental Research Institute of Michigan, strongly employs
the concept of pipelining. It consists of a pipeline of programmable processors, called stages, specially
designed for real-time image processing. In this machine provision is made for the implementation of a
3x3 neighborhoods by means of suitable delays, and each processing task is carried out on the pixels
flowing from the image. One of the most important features of the Cytocomputer architecture is that the

input/output of images is sequential and this is well adapted to input/output devices for image data.
PYRAMIDS (CONES)

New ideas on the structure of parallel computing systems for image processing have led to the design
of machines which combine both the concepts of SIMD and pipelining. These machines are
hierarchical systems which consist of layers of arrays which are stacked and where the computing cells
have both lateral and vertical connections. The layers, generally, are tapered starting with a large base
and ending with a vertex (apex), thus resembling a pyramid (cone) structure. (Recent contributions in

this area may be found in [17, 7, 3].

An important approach to fast computation on images [31] was called the recognition cone. Basically,
it is a layered system of elementary processors (cells) each layer being structured as an array. At the
bottom layer, the base array inputs information from the outside. After a number of layers, at each of
which the number of cells is reduced by a constant factor, the apex of the cone is reached, where the
result of the computation is output. In each layer a transformation can be accomplished in parallel: all
processors execute the same instruction in SIMD mode. Different layers can execute different
transformations. The control structure is such that no specific layer is privileged during processing.
This multilayered system can be considered as pipeline of processors. Data flows through the layers; at
each layer an operation on the data is performed and the output of this operation becomes the input for

the next layer.

In a broad sense, the high image definition in the base array corresponds to foveal vision, while
decisions for pattern recognition are made at the apex which simulates cortical processing of visual
information. Much of the work is based on the fact that not all information present in the input image is
significant for solving a specific task, as shown in Kelly’s paper on "planned" search for edge detection
[14].
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This general model has also been considered by Levine [15], Riseman [18] and Tanimoto [28].
Information can take place downwards as well as upwards and, in some cases, also laterally. A
processor should be able to access information from its own memory (sméll at the base and larger
memories towards the apex) as well as from its neighbors on three successive layers. Such a structure
has a number of advantages: the arrays process a large amount of data simultaneously; the pipeline
further speeds up the processing; input ‘and output can be done very efficiently. This architecture may
seem expensive considering the increase in the number of processors when compared to a single
array: however, this is not so, since for a pyramid in which each layer has 1/4 as many processors as
the preceding layer, only one third more processors is required. Pyramids have been simulated on a
sequential computer [29]. The fast development of VLSI technology plus the decrease in memory cost

will soon enable the practical construction of machines of the cone-pyramid type.
DATA FLOW ARCHITECTURES

Data flow architectures are the natural implementation of the computation graph model. These
machines allow each instruction of a program to be executed as soon as all its operands are available
to it. There no notion of a single controller. Thus a highly concurrent computation can be carried out by
these machines by assigning all the ready instructions to different processing units. This is a very

important feature since it allows one to compute complex algorithms in reasonable time.

The concept of data-driven computation is old, but only in recent years architectural schemes
employing it have been developed and processors with data driven execution have been built. At MIT a
static data flow architecture is under development and its potential performance for large scientific
applications is being investigated [4]. Also at MIT another data flow machine which allows dynamic

procedures is being built. Most of data flow projects use the mechanism shown in (Fig. 4).
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FIG. 4
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The program, in the form of a data flow graph, is stored in the activity store. As soon as an instruction
is ready for execution, its address is entered in a queue unit ( a FIFO buffer store). The first instruction
on the queue is read by a fetch unit and sent to an operation unit, where the action specified by the
instruction is performed. The output produced by the operation unit is then sent to an update unit
which enters the results into the operation fields of some specified instructions. The update unit also
tests whether the instructions which recieved the data are now ready for execution and, if so, enters
their addresses in the instruction queue. The degree of concurrency present in a program can be
measured by the number of entries present in the instruction queue. If a sufficiently large number of

operation units are available, the parallelism can be fully exploited.

A project of the Nippon Electric Co., called the Template-Controller Image Processor (TIP) [12],
combines the data driven computation concept with the pipeline technique. In this way TIP overcomes
the disadvantages of the pipeline processor, that is (a) the lack of flexibility to adapt to different
processing requirements and (b) the need for all processing stages to be synchronized by the same

clock to avoid improper propagation through the pipe.
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TIP is essentially composed of three rings (Fig. 5): 1) a ring of processing units, each implementing a
specific function; 2) a ring called the addressor unit, containing generator, reader, writer, bit-operator,

and distributor; and 3) a main ring which interconnects the other two. The addressor unit reads data
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from the memory and provides them, via the main ring, to the processing units; it also writes back into
the memory the output data from the processing units. During the initialization phase, the addressor
unit receives from the host computer a set of templates which are defined externally. After the
interpretation, these templates are sent to the processing units to control data flow and image

definition.

Data flows through the rings,each data item bearing an identifier and one or more destination flags.
When the data reaches the right processor, i.e. the processor indicated by its destination flag, an
operation is performed according to the template the data identifier matches; the original data

disappears unless it contains other destination flags.

The performance of the TIP system on a typical image processing task, the Fourier transform, is

evaluated in terms of the number of data transfers through the ring bus between processing modules.
A data flow machine is effectively programmable and its base language is a data flow graph.
MIMD ARCHITECTURES

The class of MIMD (Multiple Instruction Multiple Data Stream) machines, which are more versatile and
therefore have higher inner compliexity, cannot be modelled by the above mentioned models. The
asynchronous actions of the set of the processors and the control of the system, which is defined by a
set of brecedence rules, mutual exclusion, and other requirements, are not considered in these models.
Some aspects of these machines have a counterpart in the Petri net model [19], but MIMD cannot be
considered to directly descend from Petri nets. A MIMD system may run asynchronously with each
processor executing a different and not necessarily equally long sequence of instructions; a host
machine will load all programs and arbitrate the data flow between the processors, common memory,
and individual memories. The asynchronous mode stems from the different execution times of the
processors thus allowing greater operational flexibility. The communication of partial results between

processors is established according to precedence rules in order to avoid indeterminacy.
ZMOB

This multiprocessor machine uses a bus, called the conveyor belt, which allows a fast and flexible
communication between processors in a byte parailel mode. Built at the University of Maryland, it
consists of 256 Z80A microprocessors, each of which has a local memory of 65K bytes and a clock
cycle of 2.5 microseconds. Thus the high number of 100 MOPS on 8-bit data is possible on ZMOB,

The processors may execute arbitrarily complex. programs which may be either identical or different,
due to their high memory capacity. When performing operations on images, each processor may work
on a different subimage; this generates the problem of choosing a partition of the image in such a way

that both a limited number of interactions between processors occurs and the input of data is not
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slowed down by requiring a special format.
PYRAMIDAL ARRAY NETWORK

The recent pyramidal array network proposed by Uhr et al. [30] is a combination of SIMD and MIMD
machines, and is particularly attractive for many applications such as image processing, pattern
recognition, and data base implementation. Furthermore, this structure appears useful for a variety of
problems which can be solved by a divide and conquer technique and for situations which require one

to examine several alternatives, etc.

The pyramidal array network consists of large arrays of very simple processors which operate in SIMD
mode and smaller networks of more powerful processors which operate in MIMD mode. These arrays
and networks are arranged to form a pyramid-like system, which, starting from a base, a large array of
1-bit processors, converges to an apex. At each layer of the pyramid the number of processors
decreases while their power and flexibility increases. At the higher levels the processors have their own

controllers, thus allowing asynchronous operation.

Since the network operates in MIMD mode it might be useful for a processor to read from distant
memory locations which are normally not addressable. A partition of this MIMD system is therefore

needed to solve both memory access and contention.
MATCHING TASKS AND ARCHITECTURES

For a good match between the computation to be achieved and the system achieving it, not only must
there be a logical correspondence between the control points on the model and those on the machine,
but also the information should reach the processors in the shortest time, so as to use all the active

processors most of the time.

In the case of image processing systems where the amount of data is remarkably high (consider, for
instance, a Landsat image taken at six different wavelengths, with an 8-bit grey scale on a roughly 2000
by 3000 pixel image} a high throughput rate is mandatory. Data from the pixels should be available to
~ the processors at the clock rate of the machine, thus avoiding time delays due to the interprocessing

communication and memory contention.

The choice of a best architecture for a class of problems should take into account both the required

computation and the exploitation of the system resources.

In this last section we will review some classes of algorithms for image processing and their well

matchedness to the architectures discussed above.

SIMD machines are well suited for local processing of images in parallel. By a local operation is
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meant an operation which computes the value of a pixel in an image in terms of its own value and the
values of its neighboring pixels. Most of the preprocessing tasks ,such as smoothing, thinning, etc.
involve local operations and can be efficiently performed on a SIMD machine where each processor is
acting on a single pixel and there is a fixed interconnection scheme between processors. Also
statistical pattern recognition on images, which uses matrix multiplication, well matches this class of
machines. In the paper by Dyer and Rosenfeld [8] the cellular automaton model! is used for the analysis
of the computational complexity of a number of image processing and recognition tasks. For a memory
capacity of each cell proportional to the log of the number of pixels in the image, typical results show
that the execution times are of the order of the diameter of the array (one task, for instance, was area
computation of a connected region). Closer to the machine level is the analysis in[2] of the
computational cost of some typical image processing algorithms when performed on a SIMD machine
(CLIP 1V). In this paper the performance of the parallel versus sequential implementation of the same
tasks is evaluated in terms of the ratio of the number of clock cycles of the machine, showing that there

is still a gain in using CLIP IV even for problems which strongly use matrix arithmetic.

Region level operations [26] are involved in many algorithms that perform higher level tasks on
images. These operations differ from the local ones in an essential way: pixels remain fixed during the
computation, but regions, resulting from the segmentation of an image, may vary in size and number
both during computation and from image to image. Thus fixed interconnection schemes for processing
elements do not match this class of algorithms; a reconfigurable array could be the optimal solution.
Processing at the region level may involve merging or splitting of regions or matching configurations of

images between two regions or with an image model.

An increasingly important area in image processing is the analysis of time-varying images;
applications in this field include meteorology, biomedicine, and industrial automation. One of the most
fundamental problems in dynamic image analysis is the tracking of objects from image to image in order
to evaluate the motion of the objects, if rigid, or to describe how the shape of the object has changed
[1]. The amount of data here is- dramatically high and a general-purpose computer usually iIs
inadequate for real-time processing. With a multilayered pyramid considerable speed-up can be
obtained; images, input at the bottom layer of the pyramid, flow through the layers upwards, and while a

layer is operating on an image the preceding layer is operating on the next image.

While SIMD machines are suitable for image processing applications, where repetitive operations are
to be performed, MIMD machines appear more appropriate for pattern recognition and image
understanding. The goal of pattern recognition is to describe an image in terms of the objects present in
it, their features and their interrelationships, and this involves more complex high level operations. A
typical example is given by a matching problem where an instance of an object or, more generally, a
fixed configuration of objects is to be detected in an image. This problem arises in many applications
involving satellite images, biomedical images, etc. Several approaches have been proposed for solving

such problems; some of them are based on relaxation techniques [25], and others on structural
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techniques [10]. When using a MIMD machine for this task, different processors may be assigned to
different objects and then the search for a match occurs independently on each processor;
alternatively, more than one processor may be assigned to an object with each processor implementing

a different part of the search.

The problem of recognizing an object in a picture can also be efficiently solved on a pyramidal array
network, which can be considered to model both retinal and cortical information processing. In this
case the base of the pyramid is used to input data from the external environment, as previously
mentioned; a few successive layers,operating in SIMD mode, perform simple preprocessing operations
such as the extraction of elementary features, contours, etc; then the higher layers perform clustering
and classification on objects in the picture using different groups of processors, each operating in an

asynchronous way.

Since a number of image processing machines are currently available, it is important and useful to be
able to introduce some objective standard parameters in order to evaluate them. In sequential
computers processing images the instruction time of the machine may be considered as a starting point
or, even better, the number of elementary operations performed on a single picture element per unit of
time (pixop for short). For a discussion of the ingredients to be used in assessing the merits of parallel
image processing machines see [20]. Furthermore, the programming effort required to run a correct
sequence of instructions on a machine also has to be considered in machine evaluation. Finally, typical
tasks should be discussed, so that, when different machines perform them, a relative time ordering can
be established. Typically, image input/output, local operations on pixels, histogramming and
thresholding are the most frequently used components of a general image processing package, and so
may be useful in defining benchmarks. It is important to note that pixops have increased by seven
orders of magnitude in the last twenty years and that, for a project at Goodyear Aerospace called MPP
[27], the expected pixop rate is of the order of 10 Although a benchmark has been suggested in [20] (
a program for detecting, sizing and counting tissue cells) it is also pointed out in the same paper that
some tasks can be better performed on certain machines than on others, quite independently on their

pixop rate,
Conclusion

Models have an impact both on the understanding of the computational process and on the design of
future computer architectures. Such new arhitectures will be better matched to the problems they want
to solve and therefore less time will be spent in data search, housekeeping, instruction loading, etc and
more time will be used for real processing of data. At the same time the implementation of algorithms
will be easier since the resources will be particularly tailored both to handle large data streams and for
parallel computations on subsets of the data. Conversely, these new machines will require complex
operating systems, the design of new high level languages in order to ignore the hardware details of the

machine (as seen from the programmer’s point of view) and guarantee transportability. As in many
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other situations, technological improvements will increase computer efficiency; they will also generate

new problems of a higher level of complexity but, is this not the only way to procged?
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This paper gives an overview of the mein direc-
tions of program system development in computer
vision, where special emphasis is paid to inter-
activity. A systematic representation of inter-
active computer vision systems is given. Brief
information about 39 different software systems
is listed in an Appendix.

INTRODUCTION

Among the different areas of information processing, computer vision
is characterized by some typical features developed during its pro-
gress over the last 25 years. Neglecting special hardware
requirements such as on-line scanning systems, array processors,

or display systems, these typical features of computer vision may

be described as follows:

o Images have to be processed, i.e., large amounts of
two-dimensionally structured data, e.g., 10° to 107
elements (image points), are transformed by certain
operations defined on images.

e Images have to be analyzed, i.e., the primery informa-
tion of 103'to 109 bits has to be reduced, even to a
one bit message (yes-no) in the extreme case.

In general, in both types of tasks no well-suited theories are
available to allow straightforward problem solutions. In fact, the
recent practice in computer vision (image processing and image
analysis) is dominated by heuristic methods used in the design of
practical, relevant algorithms. These heuristic methods include the
experiences of experts which introduce goal oriented components in=-
to the otherwise unrestricted trial-and-error procedures.
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Therefore, in designing computer vision algorithms the following,
periodically repeated sequence of steps is typical:
(1) new design or modification of an algorithm, or of some
operations within an algorithm,

(ii) transmission of these conceptual ideas to the computer,
and performance of the related instructions by the com-
puter,

(iii) evaluation of the results which may be available in the

form of an image, as a graphic, or as a data file.

The interaction between human and computer has to be realized at
step (ii) of this sequence. To ensure high efficiency in the pro-
cess of designing computer vision algorithms, the communication
between human and computer should be as direct as possible, i.e.,
should not suffer from unnecessary repetition, or from other un-
important conversation with the system, and should be supported by
high computation speed. Teking into account the currently available
computer vision hardware (up to now, final solutions or concepts
for specialized hardware structures for distributed computer vision
do not exist), these requirements have to be satisfied primarily by
software tools.

This paper is organized as follows: In Section 2 general components
or features of software systems for computer vision are listed
allowing a qualitative judgment of these systems. In Section 3 a
general orientation to high-level languages in computer vision is
sketched. In Section 4, a systematic representation of interactive
computer vision systems is given. Finally, an Appendix contains .
brief information on 39 different software systems. For information
and references to software systems in computef vision, see
Rosenfeld (1983).

COMPARISONS OF SOFTWARE SYSTEMS FOR COMPUTER VISION

Any software system contains problem-oriented and system-oriented
components. The problem-oriented features are related to the
application area. Obviously, for analyzing printed patterns diffe-
rent algorithms or methodological steps are required than for pro-
cessing of multi-spectral pictures, for example. On the other hand,
the system oriented components are essentially determined by the
typical features of computer vision such as those mentioned above,
and these components may be found in all application areas to a



Interactive Software Systems for Computer Vision 59

certain extent.

To compare different software systems, Preston (1979) has con-
gidered the following grouping of problem oriented instructions.
eUtilities: identifiers, executives, formatters, I/0 commands,
test pattern generators, help files.

e Image Display: CRT, hard copy, interactive graphics.

e Arithmetic Operators: point, vector, matrix, complex number,
Boolean variables.

e Geometric Manipulation: scaling and rotation, rectification,
mosaicking and registration, map projection, gridding, and
masking.

e Image Enhancement: noise removal, Fourier analysis and other
spectral transforms, power spectrum, filtering, cellular
logice.

e Image Analysis: histogramming, statistical principal components.

sDecision Theoretic: feature selection (training), classifying
(unsupervised), classifying (supervised), evaluation of
results.

This listing of problem oriented system components may be considered
to be the fundamental instruction set of computer vision, cp. /42/.
On the other hand, in Voss et al. (1983) system oriented components
were studied, and the following list was used.

eModularity: For a given library of subroutines, these sub-
routines may be called individually, or may be connected to
main programs.

eInteractivity: A working method is guaranteed allowing the
direct input of commands (dialogue system), or supporting pro-
gram development without explicitly reverting to the computer's
user system.

eSimplicity: The command languege (dialogue system) or the
programming language is easy to learn and contains mnemonic
terms.,

*Efficiency: Fast reactions of the system are guaranteed. Or-
ganization tasks (file processing, editing, etc.) as well as
computer vision operations run with high speed.

*Reliability: The system works reliably. Besides fault-freeness
of the subroutines, the fault-free work of the user is assured.
The destruction of the system is generally prevented, and a
detailed analysis of user inputs is guaranteed.
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eFlexibility: The modular system allows the design or
arbitrary programs; access to a single image point, bit, or
character is possible.

eVariability: In the modular system, simple possibilities for
altering or extension exist, i.e., extensive sequences of
operations may be treated as a new system unit, and may be
integrated into the total system.

ePortability: The system may be transferred to, or implemented
on, another hardware system in a relatively simple way.

The fulfillment of these partially contradictory demands "as
optimally as possible"™ represents a very complicated task. An
optimal system should take away all unnecessary organization tasks
from the user, and should allow the user to concentrate on the
intrinsic tasks of computer vision. The only demand all systems
have to satisfy is modularity. This is enforced by the great
complexity of operations in computer vision, e.g., extraction of
shape features, generation of texture features, Fourler-filter
operations, or image model comparisons.

Besides the modularity requirement, the other listed requirements
are satisfied by existing computer vision software systems to dif-
ferent extents. In the present paper, these software systems will
be discuséed, and special attention will be paid to the demand of
interactivity. A "genetic" organization scheme was conceived re-
lating to the historic progress, more or less. This systematization
attempt is based on the study of more than 50 software systems.

HIGH LEVEL LANGUAGES IN COMPUTER VISION

In principle any programming language may be used for the needs of
computer vision. The problem consists in the linkage of simple
modules (subroutines, algorithms, operations, etc.) into a program.
For this, three different possibilities exist.
eStandard procedures: These procedures are integrated parts of
the system or the language. The user may apply them without
any programming or loading. The disadvantage of these proce-
dures consists in the fixed status which hinders optimal,
problem specific usage.
eInternal procedures: Within a given main program the possibi-
lity is provided to define program parts which will be used as
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subroutines or functions within the main part of the program.
Internal procedures will be formulated within the context of
the main part of the program, and will be translated together
with the main part of the program. The disadvantage of this
approach is the possibility that short main programs of 100
to 1,000 instructions may be inflated by complex procedures
to 10,000 to 100,000 instructions.
eExternal procedures: These procedures may be designed and
translated independently of the main program, and the trans-
lated versions may be stored in external memories in case of
lack of central memory. In general, before starting a main
program a loading and/or linking process is required. The
advantage of externmal procedures is the possibility of short
main programs, even by writing external procedures in agsembly
language.

Any high level language includes standard procedures, and nearly
all of them include internal procedures, too. Modern versions of
high level languages permit calling of extermal procedures, but
this is not the case for the original versions of these languages
such as ALGOL 60, BASIC, PASCAL, APL, or PPL. However, in FORTRAN
the use of external procedures (assembler routines) was considered
at the very beginning. This is one of the reasons that FORTRAN
found relatively widespread use in computer vision.

Commercial computer vision systems meske use of high level languages
and subroutine libraries. This approach is obvious and leads
straightforwardly to results. Within the last 5-10 years,
disadvantages of this approach have been recognized connected with
the difficulty of designing new procedures and programs. Any algo-
rithmic change has to be realized by calling the editor of the user
system. Then, the new procedure or program has to be compiled, and
all required program parts have to be loaded and linked. Finally,
the program testing may take place. The use of editing, compiling,
loading, and linking leads to high expenses in time and organiza-
tion. (By our own experience, for a given FORTRAN program of 15
lines the simple operation of replacing one addition by one subtrac-
tion requires 90 seconds at least if a disk memory is used.) The
second disadvantage of high level languages is given by the fact
that in nearly all ocases no direct communication between humen and
computer is possible because procedures cannot be used as commands.
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Only by installation of a procedure within a program frame is its
direct execution possible by using a start command, see Kupka (1980).

The way out as chosen by many computer vision groups consists in
turning to interactive working methods which frequently involve
abandoning the available high~level language, or even designing
one's own more or less comfortable interactive user system. Exist-
ing interactive programming languages such as BASIC or LISP do not
offer flexibility and variability as needed .

INTERACTIVE SOFTWARE SYSTEMS

In the following a systematic overview of interactive software
systems in computer vision is given. The subsequent seven stages of
development are bottom-up; any state contains the possibilities of
the preceding stages, in general. This gystematic approach reflects
the historic development of interactive software systems in compu-
ter vision; see Figure 1.

___» ANBA2
Compiler — __» AMBA
_ MOSATK
INTER
Interpreter — PPL APS MINIXAP MIRAGE p, 1
MAGIC ’I.‘ASI/C'ILIAD 1471
] LCELLO11 PICASSO
Job Control GLOL CELLO  PROFI11
NLIPST0
IMAGIC
Job Stream — MDPP SUPRPIC IPS
IPU PIC
| _exAP FLIP DIBIVE
Command, PAX KANDIDATS SCANCANSTEXAC
Menu — SPEL ISPAHAN SAM  RECON
TICAS
Question — HIDACSYS=DIODA
Answering
1970 ) 1975 1980
Figure 1

Historical development of interactive software
systems in computer vision
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execution. The requirements for text processing are more complex
than in the case of command systems, and a supervising partial sys-
tem is required containing instructions, such as "formulation of a
job stream,"™ "storing of a job stream under a certain name," and
"call and start of job stream."

A job stream system may work in execute mode (immediate realization
of input commands) or in program mode (execution of job streams).
Examples of job stream systems are MDPP (1978), SUPRPIC (1980), IPU
(1980), IMAGIC (1981), IPS (1981), and NLIPS-70 (1981). Though they
have many advantages, job stream systems possess the disadvantage
of realizing linear sequences of commands only. No branching,
looping, or internal procedures are possible.

JOB CONTROL SYSTEMS

A job stream system may be extended to a job control system if
control commands are possible in job streams too, allowing non-
linear processing by the use of labels, jumps, loops, or internal
procedures. For job control systems, languages with well-developed
syntax are required so that we may already speak of programming
languages in this case. The (in general non~linear) command process-
ing is realized by interpretation. All commands possess a procedure-
like structure, i.e., they are formed by names of procedures and
lists of parameters. This is true for arithmetic operations too;

see CELLO, GILOL, or PICASSO. Because extensive programs may be
written within the job control system language, the use of comments
is normally allowed in these systems.

INTERPRETER SYSTEMS

The syntax of system languages is made very rich by the possibility
of formulating arithmetic operations and comparisons through inde-
pendent instructions in common mathematical notation. Thus, the
system language has taken the final step to being an autonomous

high level programming language. The realization of single commands
in execute mode, or of programs in program mode, is done by inter-
pretation. For that reason, these systems are called interpreter
systems. By using an interpreter, the execution of & program written
in the source language takes place command by command, without first
compiling or assembling the program as a whole; see Gould (1977).
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For example, BASIC and LISP are interpreter languages. In the sense
of negation of negation, we have reached our starting-point again,
which was characterized by high-level languages and their use in
modular systems. But interactivity is the new feature, which seems
to point out that interpreter systems are advantageous for computer
vision. (Indeed, the efficiency of program execution is low.) The
question now is, why the computer vision community does not use
interpreter languages such as BASIC, APL, or LISP without altera-
tions?

The main reason is given by the restricted possibility of using
external procedures within these languages. The use of intermal
procedures is forbidden because of the frequently large number and
size of the necessary algorithms. Furthermore, the standard proce=-
dures of these languages are not written for the needs of computer
vision. But an extension of the set of admissible standard functions
is not possible without alteration of the language definition, and
of the compiler for the given high level language.

The only way out is the creation of & new, autonomous language on
the basis of existing interpreter languages, by extension of the

set of admissible standard functions reflecting the special interests
of the user. In this sense, some of the most recent computer vision
software systems may be considered to be extensions of standard
high-level programming languages; see Table 1.

System Basic Language Literature
ILIAD PASCAL Eriksson (1982)
MINTI-XAP LISP Luczak (1977)
APS APL Reeves (1979)
MIRAGE BASIC Wade (1980)
PPL PL/I Kruse (1980)
TASIC BASIC Nawrath (1979)
MAGIC BASIC Taylor (1978)
I4PL LISP Granlund (1982)
Table 1

List of interpreter systems
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COMPILER SYSTEMS

In general, interpreter systems satisfy the software system demands
of users for the needs of computer vision. The only disadvantage is
given by the low operation efficiency caused by the interpretations.
While this disadvantage, in general, is not observable in execute
mode, it will be realized to be troublesome in the case where a
program recognized to be well-suited, and having many loop struc-
tures, has to run very often in daily practice. A way out may be to
compile the program as a whole before running. In this case, between
loading and starting of the program, a supervisory command "compile"
is required, making necessary the control of a compiler system by
its own user gystem. In these compiler systems no external proce=
dures are included; thus loading and linking is not required. For
computer vision essential procedures may be included as standard
procedures in the compiler system language. Exchange or extension
of the set of standard procedures can be done without altering the
compiler, i.e., without altering the user system.

In the literature only the compiler systems INTER (1979), MOSAIK
(1979), AMBA (1981), and AMBA2 (1983) were accessible to us. But,

as illustrated in Figure 1, in the near future, an increasing number
of compiler systems for computer vision can be expected.

APPENDIX: Software Systems
AMBA = Automatisierte Mikroskop-Bild-Analyse

Compiler system, Humboldt University Berlin /39,49/, developed

since 1979 for biomedical applications (histology), Computer EPR 1100
(48k), own language LAMBA, system and 100 procedures in assembler.
The complete system, including editor, compiler, procedures, para-
meter lists, as well as sections for source programs and translated
programs, requires 20k memory. The language allows comments, labels,
jumps, intermasl procedures, and arithmetic for fixed point variables
and indexed variables.

AMBA2 = AMBA system 2

Compiler system, Humboldt University Berlin /50/, developed since
1982 for histology and other biomedical applications, Compter
EPR 1100 (48k), improved language LAMBA, system and 110 procedures
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in assembler require 24k, Additional arithmetic for floating point
numbers.

APS = Array Processing System

Interpreter system, developed since 1975 at McGill University in
Montreal for PDP-15, and at Purdue University in West Lafayette for
PDP-11/45 /36/. System in FORTRAN, 54 procedures in FORTRAN or
agsembler. The system language is APL allowing interactive work in
execute mode as well as interpreter programs.

CELIO

Job control system, developed since 1975 at the University of
Uppsala for cytology /19/, Computer PDP-8/e (32k). System in
FORTRAN, 200 procedures in FORTRAN and assembler. The command
language sllows comments, labels, jumps, and intermal procedures.
No arithmetic expressions. Execute mode and interpretative work
both possible in program mode.

CELIO11

Improvement of CELLO, since 1977, for PDP-11/55 (128k). System in
PASCAL, 150 procedures in FORTRAN and agssembler, indexed variables
/4/. New procedures may be included into the external library.

DIBIVE = Digitale Bild-Verarbeitung

Command system, Institute for Radiation Protection, Neuherberg,
Munich /37/, developed since 1979 for cytology, Cbmputer SIEMENS
p330. The System consists of an interpreter and about 300 procedures
written in FORTRAN and assembler. Single commands may be input
interactively and will be interpreted.

DIODA

Question-answering system, developed since 1978 at the University
of Leiden for cytophotometry /51/, Computer PDP-11/60. DIODA is a
dialogue system completly written in FORTRAN and requires about 6k.
It allows the interactive call of six problem specific subprograms.
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FLIP = Free-form Language for Image Processing

Command system, developed since 1973 at Los Alamos Scientific
Laboratory for materials research (radiography) /20/, Computer

CDC 6600 and CDC 7600, procedures in FORTRAN and assembler, inter-
actively callable commands with parameters, or empty parameter list.

GLOL = Golay Logic Processor Operating Language

Job stream system, developed since 1971 at the University of
Pittsburgh on computer VARIAN-620i /31,32/ with application to
white blood cell analysis, about 40 procedures. The interpreter
language is similar to BASIC and allows interactive calling of
single commands. In this language loops and branches are possible
(DO V(N1), V(NW2), V(N3)...STOP, or IF...ELSE...STOP,.

HIDACSYS

Question-answering system, developed since 1976 at the University
of Leiden for cytophotometry /45/, PDP-11/10 (24k), simple dialogue
system for calling subprograms, these call for required parameters.

ILIAD = Interactive Language for Image Analysis and Display

Interpreter system, developed since 1978 at the University of
Uppsala for cytology /8,9/, PDP-11/55 and VAX-11/780. The system
consists of editor, translator, interpreter, and procedures. The
language is PASCAL-like. The translator generates intermediate code
which is processed by the interpreter. The system is written in
PASCAL, 155 procedures in PASCAL and assembler. Resident system
part 108k, altogether 600k. Possgibilities of extension are given.

IMAGIC = Image Analysis in the Computer

Job stream system, developed since 1978 at the University of
Groningen on computer NORD-10 (48k) /46/, for application to electron
microscopy. The system is written in FORTRAN, 85 procedures are
programmed in FORTRAN or assembler. The language IMAGIC is a command
language without jumps, and without conditional operations. Job
sequences of commands are possible for subsequent applications. In
this way, small dislogue programs may be formed.
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KANDIDATS

Command system, developed since 1971 at the University of Kansas
/16/. The system allows the input of parameter commands. Procedures
are written in FORTRAN; applications in remote sensing.

MAGIC = Image Basic

Interpreter system, developed since 1975 for the commercially
available image processing system MAGISCAN /43/. MAGIC is imple-
mented on computer ROVA-3/12 (32k) and is an extension of BASIC.

MDPP = Micrograph Data Processing System

Job stream system, developed since 1976 at University of Basel on
IBM~370/155 (120k) /40/, application to electron microscopy. 100
procedures written in FORTRAN; all commands consist of two
characters only; required parameters are called by the system in
dialogue. In the case of command sequences parameters have to be
input by data cards.

MINIXAP

Interpreter system, developed since 1977 at the University of
Maryland on PDP-11/45 /27/. The system language is LISP; procedures
mey be called interactively.

MIRAGE

Interpreter system, developed since 1978 on computer MULTI-20 (32k)
/52/. Application in electron microscopy. The system is a BASIC
extension with special image procedures which are written in
assembler language.

MOSAIK = Modulares System zur Analyse isolierter Komponenten

Compiler system, developed since 1978 for the commercially available
image processing system MORPHOQUANT from VEB Carl Zeiss Jena /14,48/.
Extension and improvement of system INTER. The system and 60 proce-
dures are written in assembler. The computer KSR 4100 (16k) requires
overlay processes.
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NLIPS70 = NEC Laboratory Image Processing System

Job control system, developed since 1379 for the computer
NEAC-3200/70 at Research Iaboratories, Nippon Electric Company,
Kawasaeki /41/, application to remote sensing. About 100 procedures,
written in FORTRAN. Commands allow missing parameters, command
sequences are interpretatively processed, restricted possibilities
of loops, branching, and arithmetic operations.

PAL = Picture Analyzing Language

Interpreter system, developed since 1980 at Institute for Bio-
cybernetics in Wargsaw on computer K-202 /23/, application to bio-
medical problems. The language is similar to ALGOL68 and allows
interactive work because necessary declarations may be placed at
arbitrary positions within a program.

PAX

Command system, developed since 1971 at the University of Maryland
/21/. 145 procedures are written in FORTRAN; the system is written
in assembler. In execute mode, a given parameter command is
analyzed and realized.

PIC

Command system, developed since 1979 at Cancer Research Center,
Heidelberg on computer IBM-3032 /28/, biomedical applications.
80 procedures are written in FORTRAN; the command interpreter is
programmed in assembler,

PICASSO = Picture Assembly~Programmed Operations

Job control system, developed since 1976 at Institute for Biocyber—
netics, Warsaw on computer K-202 /23,24/, for biomedical appli-
cations. 170 procedures written in assembler may be connected to
programs with jumps and loops, but without arithmetic operations.
The number of variables is restricted (V1...V9).

PPL = Picture Processing Language

Interpreter system, developed since 1974 at the University of
Linkdping on computer D5/30 (64k) /15,22/. Procedures in FORTRAN,
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language interpreter in assembler. The language is PL/I-like but
structured (no jumps). Both execute mode and program mode are
possible.

PROFI11 = Processing and Retrieval of Functional Images

Job control system, developed since 1977 at the Institute for Data
Processing in Medicine, Hamburg, on computers PDP-11/45 and
VAX-11/780 /5/, application to radiology. The commands may be put
together in gtructured sequences; these sequences may be stored in
this form. The system is written in an assembler-like language
SINMPL-11. New procedures may be inserted very easily; arithmetic
operations are represented as procedures. Programs will be trans-
formed into an intermediate code used by the interpreter for
efficiency.

RECON = Reconstruction Program

Menu system, developed since 1981 at the National Institute for
Medical Research, London on computer PDP-11/34 /30/. Application to
representation of three-dimensional pictures. RECON consists of
five different dialogue programs. In these programs, via menu,

27 operations may be selected (DI=display, RZ 30=rotate about Z
axis to 30°, etc.).

SAM = Sensor System for Automation and Measurement

Menu system, developed since 1980 at Fraunhofer Institute for
Information and Data Processing, Karlsruhe /10/, application to
robot control. Software in PLZ, a PASCAL-like language. A menu is
shown on the display; the user selects functions by the input of
single characters.

SCANCANS = Scanning Cell Analysis System

Command system, developed since 1975 at the University of Uppsala
on computer PDP-8/e /3/, biomedical applications. Input of 40 dif-
ferent commands with O to 5 positive integer parameters each.

SPEL = Simple Picture Evaluation Language

Menu system, developed since 1975 for the commercial image pro-
cessing system MAGISCAN /43/. Via light pen, on a display about
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30 commands may be called. For these commands, parameters and
decisions are specified in dialogue form.

SUPRPIC

Job stream system, developed since 1978 at the University of
Pittsburgh on computer Perkin~Elmer 7/32 /34,35/, biomedical appli-
cations. About 20 procedures written in assembler which may be used
for a wide variety of image operations, in dependence of the
specified parameters. System is written in FORTRAN. Commands are
two-digit numbers. In the following example, the first image (01)
from a specified memory unit (09) will be copied (04) to the second
image (02): 0409010902.

TASIC

Interpreter system, developed since 1977 for the commercial image
processing system TAS /29/. The computer LSI-=11 (32k) is controlled
by the BASIC~like language TASIC. In execute mode it is also
possible to input menu commands via light pen. The commands are
written as standard procedures in TASIC.

TEXAC = Texture Analysis Computer

Command system, developed since 1977 at Georgetown University on
PDP-11/34 /26/, for biomedical epplications. The command language
allows more than 20 procedures written in FORTRAN. Any command
consists of a three-letter mnemonic code followed by O to 5 para-
meters, Examples of image commands are MOV A,B (store image A in
image B) or ADD A,B,C (pointwise addition of images A and B, result
in image C).

TICAS = Taxonomic Intra-~Cellular Analytic System

Menu system, developed since 1972 on computers CDC 6400, PDP-10,
and PDP-12 /1,2/. Application in cytology. Interactivity is ensured
by a dialogue program, but menu selection by integer input is
possible, too. Procedures are written in FORTRAN and assembler; the
system is written in FORTRAN.
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Command system, developed in 1972 at the University of Maryland on
UNIVAC-1108 /17,18/. System in FORTRAN, procedures in assembler.
The syntax of parameter commands is similar to FORTRAN.
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Abstract

This paper is concerned with a systematic exposition of the usefulness of two-
dimensional (2-D) discrete Gaussian Markov random field (GMRF) models for image
processing applications.  Specifically, we discuss the following topics: Notion of
Markovianity on a plane, statistical inference in GMRF models, and their applications
in several image related problems such as image synthesis and compression, image
classification and image restoration.

I. INTRODUCTION

In the analysis and processing of 2-D images one encounters a large amount of data.
In a typical image restoration or compression problem, it is not uncommon to work with
images defined on grids of dimensions 256 x 256 or 512 x 512. To enable efficient
processing of this data, it would be preferable to have an underlying model that explains the
dominant statistical characteristics of the given data. Subsequent processing of the images
can be efficiently done using the models fitted to the images. Although it is very difficult to
identify the underlying physical mechanisms that could have possibly generated the observed
data, any analytical expression that explains the nature and extent of dependency of a pixel
intensity on intensities of its neighbors can be said to be a model.

A typical image is represented by the gray level variations defined over a rectangular or
square lattice. One of the important characteristics of image data is the special nature of the
statistical dependence of the gray level at a lattice point on those of its neighbors. The
different classes of image models suggested in the literature attempt to characterize this
dependence among the neighboring pixels. One way of characterizing the statistical
dependence among the neighboring pixels is to represent y(s) as a linear weighted
combination of {y(s+r), reN} and additive noise where N is known as the neighbor set and
does not contain (0,0). Specific restrictions on the members of the neighbor set N yield
representations familiar in image processing literature For example, the popular “causal
models” are obtained when N is defined as a subset of the set {(ij): i<0, j<0, (ij) # (0,0)}.
One of the features of using the causal model is that the resulting image processing
algorithms are recursive. One can generalize the causal models to obtain the class of
“unilateral” models by including more neighbors, but still preserving the recursive structure of
the image processing algorithms. The unilateral models result when N is a subset of the non
symmetric half plane s* defined recursively as in [Goodman & Ekstrom, 1980]. Unlike in 1-D
discrete stochastic process, where the existence of a preferred direction is inherently
assumed, no such preferred ordering is appropriate for a 2-D discrete lattice. Thus, it is
possible that an observation y(s) is dependent on neighboring observations in all directions
leading to noncausal or bilateral representation. The simplest non-causal model is obtained
when y(s) is dependent on its east, west, north and south neighbors. One can consider,
more general representation by including the diagonal neighbors and so on.
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In this paper we are concerned with a particular class of 2-D noncausal models known
as the Gaussian Markov random field (GMRF) models. Let {y(s), seQ}, Q ={s=(ij); 0<i, j<M-I}
be the observations from an image. It is postulated that this data is generated by an
appropriate 2-D GMRF model. The 2-D GMRF models characterize the statistical dependency
among pixels by requiring that

ply(s)| all y(r). r #5) = p(y(s)| all y(s+r), reN)

where N is the appropriate symmetric neighbor set. For instance N={(0,1),(0,-1),(-1,0),(1,0)}
corresponds to the simplest GMRF model and by including more neighbors we can construct
higher order GMRF models. Since GMRF models are defined only for symmetric neighbor
sets, often N is equivalently characterized using an asymmetrical neighbor set NS; ie., if rt-:NS
then -rg NS and N=(r:reNS)U(-r:reNS). Since the introduction of GMRF models in the literature
[Rosanov, 1967; Woods, 1972] there has been considerable interest in using GMRF models for
image restoration, image classification, synthesis and coding.

Prior to any practical application of GMRF models two major problems have to be
tackled, viz. the estimation of parameters in GMRF models and the choice of appropriate N
for the given image. We discuss several estimation methods for GMRF models. Of particular
interest are the statistical properties of these estimates like asymptotic consistency and
efficiency. We also discuss decision rules for choosing the appropriate N for the given
image. To illustrate the usefulness of GMRF modeis for image processing applications,
algorithms for texture synthesis and coding, texture classification and image restoration are
given alongwith pictorial examples.

The organization of the paper is as follows: the representation of GMRF models in 1-D
and 2-D is discussed in Section 2. Procedures for the synthesis of an image pattern obeying
a known GMRF model are given in Section 3. Methods for estimation of parameters in GMRF
models are discussed in Section 4 along with the statistical properties of the estimates.
Decision rules for choosing the appropriate structure of the model are given in Section 5.
The usefulness of the GMRF models for texture synthesis, texture classification and image
restoration is illustrated in Sections 6,7, and 8.

2. MODEL REPRESENTATION

We first give a brief review of the relevant theory of 1-D models and subsequently
discuss the representation of 2-D models.

2.1 One-Dimensional GMRF Models

Definition 2.1: Suppose we have a set of discrete Gaussian observations {r(t), t=1,2,. N}
Then, {r()} is said to be a unilateral mt" order Markov process in a strict sense [Doob, 1953]
if

P(r(O] all r(i), j<t) = p(r(t) [all r(t-j), 1 <ji<m)),

(2.1)
The sequence {r(.)} obeying (2.1) has the representation
m
r(t) = ;21 8; r(t=i) + VB w()), t=1,2,..N, (2.2)
i=

with associated initial conditions {r(0), r(=1),.,r(1-m)}. In (2.2), {w()} is an independent and
identically distributed (IID) Gaussian noise sequence with mean zero and variance unity.

Definition 2.2. The set {r()} is said to be a unilateral mth order Markov process in a wide
sense [Doob, 1953] if,
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E(r(t) lall r(j), ] < t) = E(r(t) [all r(t=D), | <] < m)
and

Var(r(t) [all r(i), j < 1) = Var(r(t) Jall r(t=j), | < j < m), (23)

For any arbitrary continuous distribution of {w()}, the sequence {r()} in (2.2) is a wide sense
unilateral mth order Markov process. Whether Gaussian or not, strict sense Markovianity
implies Markovianity in wide sense, but the converse is true only for Gaussian variables. The
notion of unilateral Markov process can be extended to include dependence on neighbors on
either side leading to bilateral Markov process.
Definition 2.3: The sequence {r(.)} is said to obey a mth
strict sense if

order bilateral Markov process in a

p(r(t) Jall r(i), i # t) = p(r(t) | r(t=1),.., r{t=m), r(t+1),..r(t+m)) (2.4)
The sequence {r(.)} obeying (2.4) has the representation [Woods, 1972; Bartlett, 1975]
m
z

r(t) = 8, r(t-i) + e(1),

i=—m
where
Oy = 6_ and {e(*)}

is a correlated Gaussian noise sequence with the conditional structure

ple(s) |all r(t), t #s) = p(e(s) | all r(s+t), -m <t < m, t #0), (2.5)

Equation (2.5) implies a weaker condition involving second order properties, as in

E(e(s) | all r(t), t #s) = 0,

and

Var(e(s) [all r(t), t #5) =V, (2.6)

which in turn implies that the correlated noise sequence {e(.)} has the following correlation
structure,
E(e(t) e(s)) = v, t=s

- ,jt=sp < m
et—sv i l — (27)

= 0, otherwise

Equation (2.7) can be derived as a special case of the derivation for 2-D GMRF models given
later. The bilateral Markov Model is driven by a correlated noise sequence. A consequence
of (2.5) is

m
I

E(r(s) |all r(t), t #s) = m 9; r(s-i)
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A wide sense bilateral Markov model can be defined similar to a wide sense unilateral
process. As in the case of unilateral models whether Gaussian or not, strict sense
Markovianity implies wide sense Markovianity, but the converse is true only for Gaussian
variables.

If {r()} obeys a unilateral strict sense model of order m then it also obeys a bilateral
strict sense model of order m [Woods, 1972]. Further, if 1-D spectral factorization theorem
applies, a 1-D bilateral strict sense Markov process (2.5) of order m always possesses an
equivalent unilateral wide sense Markov Process (2.3) of order m with identical spectral
density function. Thus, under Gaussian assumption, when spectral factorization applies

(2.1) «> (2.4) (2.8)
For non-Gaussian variables, (2.8) is valid in the wide sense.

Example 2.1 [Bartlett, 1975]: Consider the first-order unilateral Markov mode! r(i) = Br(i-1) +
/B w(i) where {w(.)} is an liD Gaussian sequence. The spectral density function of {r()} is

8
Si(\) =

(1+ 62 - 28 cos A)

The equivalent first-order bilateral model has the representation

]

r{i) = (r(i=1) + r(i+1)) + e(i)

1492

where {efi)} is a correlated noise sequence with the correlation structure

B

il

L =]

E(e)i) e(i)

1+92

-88

il =
(1+62)?

= 0, Otherwise

2.2 Unilateral 2~-D GMRF Models

Assume that the observations {y(s),seQ}, obey the difference equation;
y(s) = rE::N 0, v(s+r) + /B w(s), Vs, (2.9)

The set N associated with (2.9) is a subset of the set {(ij): i<0, j<0, (i,j) #(0,0)} and the noise
sequence {w(s)} is IID. Typically, (2.9) has a set of initial conditions associated with it. For
N={(-1,0), (0,-1), (-1,-1)}, (2.9) is characterized by a set of initial conditions made of the
observations along the first row and first column. The familiar “causal” models are obtained
by restricting N as a subset of quarter plane. The eausal models can be generalized to
include as many previously scanned points as possible by using the notion of non-symmetric
half plane s* [Goodman & Ekstrom, 1980] recursively defined as

1. seS*, reS* » resest
2. seS* > —s£s*t

3.(0,0) £S*
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The definition of S* is not unique. Without loss of generality, one can consider those half
planes generated by vectors collinear with cartesian axes. With N being a subset of s*, the
corresponding {y(s)} is said to be strict sense unilateral Markov with respect to a unilateral
neighbor set N if

ply(s) [all y(r}, re Qg ) = ply(s) lall y(s+r), re N) (2.10)

where QS N is defined in terms of s and N as follows:

1.5 £ KZS'N
2. s+reSZS'N for all reN

3. rer'N > (r+t) € Qs,N for all teN provided r+t # s

Some examples of possible structures of Q¢ are shown in Fig. 2.1 [Kashyap, 1981b].

N X X
X X .
X @ . N
X X X X X QS,N X X X XT
X .o X X @ X|e X X
X X X X X X X X
(a) (b)
= = (0,0)
® =g

Fig. 2.1 Examples of N and Q4 y for unilateral GMRF Models [Kashyap, 1981bl.

2.3 Non-Causal or Bilateral 2-D GMRF Models

Unlike 1-D discrete time series, where the existence of a preferred direction is
inherently assumed, no such preferred ordering of the discrete lattice is appropriate. In other
words, the notion of “past” and “future” as understood in unilateral 1-D Markov processes is
restrictive in 2-D as it implies a particular ordering of the lattice. It is quite possible that an
observation at s, may be dependent on neighboring observations in all directions. The
simplest non causal model is obtained when the dependence is on the nearest north, south,
east and west neighbors. One can think of more general dependence on nearest diagonal
neighbors and neighbors farther. Such a noncausal representation in 2-D is of interest not
only due to its generality, but is significant due to lack of spectral factorization in two-
dimensions. Thus, if the given observation set {y(s)} indeed obeys a non causal model
whose spectrum does not factorize, any finite order unilateral representation for this data will
only be approximate. In our subsequent discussion, the noncausal or bilateral GMRF models
will be simply refered to as GMRF models.

Definition 2.4: The observation set {y(s)} is said to be strictly Markov with respect to a
symmetric neighbors set N if,

p(v(s) lall y(r), r # s) = p(y(s) [all y(s#r), re N), (2.11)
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A hierarchy of GMRF modets can be defined as follows: when Ny ={(0,1), (1,0)}, we obtain a
first-order GMRF model and with Ng ={(0,1).(1.01.(-1,1).(1,1)}. a second-order model and so on.
Figure 2.2 illustrates this hierarchy up to seventh-order model. A wide sense GMRF model
can be defined as follows: '

becccteccecterealcacr e ced e eedomn-d

] | 1 ] | | | 1
] | 1 71 61 71 1 |
! 1 1 1 ] ! f 1
temmet et enrct e et cnatcccnteennd
( | | | | ] | !
| I S1 41 31 a4 51 ]
| ! I ! ! f ! !
D e T et L
| | { | | \ I 1
P 71 41 21 21 21 &4 71|
1 1 ! I 1 ! | !
D e Lt e e ot ]
1 | 1 | | | | |
1T e 30 11 x| 1] 31 61
! ! 1 f | l 1 |
D e L R e L T TP
| ] t i I ] | |
I 71 41 21 1} 291 41 71
! 1 1 ] ! ! 1 1
P e T T e L L T )
1 | | ] ! | | |
] I s1 41 31-4] 51 |
| 1 | 1 ! ! 1 |

P . LT X T SR S Sy

! | | 1 1 1 1 |
i 1 LA A T A | | |
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T L L e N s, )

Fig. 2.2 Hierarchy of GMRF models. The numbers indicate the order of the model
relative to x. [G.R. Cross, Ph.D., Thesis, Michigan State University, 1980].

Definition 2.5: The observation set {y(s)} is said to be wide sense Markov with respect to a
symmetric neighbor set N if,

E(v(s) [all y(r), r # s) = E(y(s) [all y(s+r), re N) (2.12)
and
Var(y(s) |all y(r), r £s) = Var(y(s) |all y(s+r), reN)>0 (2.13)
In our discussion, the second of the two conditions is restricted to be
Var(y(s) |all y(r), r #s) = v > 0 (2.14)

The definition (2.4) of strict Markovianity is often referred to as local Markov property
compared to the global Markovian definition used in [Rosanov, 1967; Woods, 1972]. The
global definition of Markovianity is as follows [Woods, 1972]. Let a band of minimum width P
(a band of minimum width P is a set of contiguous lattice points with a well-defined inside
and outside Q* and Q7, such that all points in Q% are at least distance P from every point in
Q27) denoted as 3Q (the “present”) separate the discrete lattice © into two regions Q" and @~
(the “future” and “past”). The set y(s), seQ? is said to be Markov of order P if,

Py(s), seQ” Iy(s), s€Q7, sedQ) = p(y(s), seQly(s), se3Q)
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This global definition includes the local Markov definition 2.4. A proof is given in [Rosanov,
1967] to show that for GMRF models local Markovianity implies global Markovianity

Given a finite image we can analyze the image as a finite slice of an underlying infinite
lattice image. This approach leads to the class of GMRF models known as infinite lattice
GMRF models. In general the infinite lattice models, do not give computationally attractive
algorithms for image processing. Another class of models, known as the finite lattice
models, obtained by assuming special boundary conditions, yields computationally efficient
processing algorithms using fast transforms like discrete Fourier, discrete sine and cosine.
We first give the representations of infinite lattice GMRF models, discuss some computational
problems associated with this representation and proceed to the representation of finite
lattice GMRF models.

2.3.1 Infinite Lattice GMRF Models [Rosanov, 1967; Woods, 1972]

Assume that the observations {y(s). s€Q} have zero mean, Gaussian distribution and
obey the following difference equation

v(s) = TENS O (v(s+r) + y(s-r)) + e(s) (2.15)

where the stationary Gaussian noise sequence e(s) has the following properties.

E(e(s) e(r)) = =64 ,v, (s-r)eN

=V, §=r (2.16)
= 0, otherwise.

The set Ng is the asymmetric neighbor set mentioned in Section 1. Using (2.15) and (2.16),
one can prove that

E(e(s) y(r)) =0, r#s

(2.17)
=V, r=s
In view of the Gaussian assumption (2.17) implies
E(e(s) |all y(r), r #s) = 0
which in turn implies
p(v(s) lall y(r), r #s) = p(y(s) [all y(s+r), re N) (2.18)

where N is related to Ny as mentioned in Section 1.

Another equivalent way of deriving the representation is to begin with the definition of
Markovianity as in (2.11) and show that {y(s)} and {e(s)}, satisfy (2.15) and (2.16) respectively.
This is done as follows [Rosanov, 1967; Woods, 1972]: since (2.11) is true,

EV(s) fall yin). v #5) = L6, v(s+n) 2.19)

Equation ' (2.19) means that the difference

e(s) = y(s) _rEN er-y(s+r)
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is orthogonal to all the variables y(r), r #s. Thus,

E(e() v(s) =0, r £

(2.20)
= Vv (for some v), r=s
Since y(s) is Gaussian and zero mean, (2.20) implies
E(e(r) Iy(s), r#s) =0 (2.21)

Equations (2.19) - (2.21) imply that y(s) should satisfy (2.15). Equation (2.15), together with
(2.21), heips to establish (2.16).

Since it is required that
E(e(s)e(t)) = —Gr\), r=s-t

= E(e(t)e(s)) = O_,v
it follows that GMRF mode! representation is defined only for symmetric neighbor sets.

A fundamental difference between 1-D and 2-D Markov models is that in 2-D case,
there is no simple connection between the noncausal and unilateral GMRF models. This is
mainly due to lack of spectral factorization in two-dimensions. Consequently, given that a 2-
D sequence {y(s)} is strict or wide sense Markov with respect to a neighbor set N, there may
not exist any neighbor.set N, so that {y(s)} is unilateral strict or wide sense Markov with
respect to N. However, any 2-D sequence {y(.)} which is unilateral strict Markov with
respect to a neighbor set N is also bilateral strict Markov with respect to a symmetric
neighbor set N”. An example of N and N” is given below and more examples are in [Kashyap,
1981b; Abend, et al., 1965].

Example 2.2 [Jain, 1976]: Consider the 2-D causal Gaussian white noise driven model,
yls) = p y(s+(0,-1)) + p y(s+(-1.0))
- P2y(s+(-1,-1) + w(s)
with E(w(s)) = 0 and E(w2(s)) = (1-p?)

The equivalent noncausal GMRF model is given by

y(s) =a Z = y(s+r) + a y(s+r) + e(s)
. re

2 3
N1 reN,
where
N7 = {(=1,0)(1,0),(0,-1)(0,1)},
Ny = {(-1.1)1,=-1).(-1,-1)(1,1)}

with the correlation structure of the Gaussian noise sequence {e(s)} being specified as

E(e(s) e(r)) = g2, s =r

1l

= ’(182, r-se Ny

It

0.282, r-se Ny

= 0, otherwise
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where

2.3.2. Finite Lattice GMRF Models

Effectively, finite lattice models are obtained by making specific assumptions regarding
the neighbors of the boundary pixels. The infinite lattice GMRF models considered in the
previous section, aithough devoid of these assumptions, are difficult to analyze. For example,
computation of .even some of the basic quantities like covariance matrices is very expensive.
The synthesis of images obeying infinite lattice GMRF models can be done only by iterative
methods [Cross & Jain, 1983] which are time consuming. On the other hand, the finite lattice
GMRF models are easy to analyze and lead to computationally elegant solutions in Wiener
filtering, synthesis and compression of images. We discuss a specific finite lattice GMRF
model representation that assumes doubly periodic boundary conditions. This model is
represented as,

y(s) = réN B, r(s ®r) + e(s) (2.22)

where ® indicates sum modulo M along both the co-ordinate axes and {e(s)} is a stationary
noise sequence with the correlation structure in (2.16). By defining

y = Cot* [y(0,0).y(0.1).y(0O.M=1).y(1.0)...
V(1 M=1)..y(1,M=1),.y (M- 1M=-T)]
an Mz—vector,

and
e = Col.[e(0,0),...e(0.M~1),...e(M-1,0}.,e(M=-1,M-1)], an MZ-vector

Equation (2.22) can now be equivalently written as,
BBy = e (2.23)
where B(8) is a block-circulant symmetric matrix

Bgo Bo,1- Bom-1

2.24
B(®) =|Bom-1 Boo ~Bom-2 (2.24)
Bo1 - -Bo,0
where each BOi is M x M matrix and
Boi = BoM-i

A necesssary and sufficient condition to ensure bounded input bounded output stability

.
ng A (1-287 ¢g) > 0.V sedl (2.25)

where 2

™
= Collcos—— s'r, reN],
s M S (2.26)
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The specific representation given in (2.22) can be arrived at by assuming that the given
image is represented on a toroidal lattice. Restrictive as it may appear, the toroidal structure
has been widely used in several investigations. It was shown in a pioneering work [Onsager,
1944] that in 2-D, one can solve problems relating to finite lattices anaiytically using periodic
boundary conditions and then obtain the results corresponding to infinite lattices by limiting
arguments. In [Moran, 1973; 1973], it was shown how an infinite GMRF model can be
constructed from a toroidal lattice GMRF model by letting the lattice size tend to infinity.
Toroidal lattice assumptions have been made in [Moran & Besag, 1975] to obtain Gaussian
maximum likelihood estimates of parameters of GMRF model. One of the important
conclusions of these investigations is that, the final results obtained with and without
periodic boundary conditions are not significantly different from each other. Simulation
results supporting the above may be found in [Chellappa, 1981].

Several other boundary conditions have been considered in the literature [Kashyap,
1981a; Jain, 1976; 1981] yieiding different finite lattice GMRF models. For instance, a useful
finite lattice GMRF model is obtained when {y(s)} is reflected along the boundaries and N is
{(-1.0). (1,0).(0,-1).(0,1)}. When toroidal representation is used the efficient computational
algorithms are obtained for any arbitrary symmetric N; however, the computational
advantages are obtained using the boundary conditions mentioned above only for the
particular set N={(0,1),(0,-1),(-1,0),(1,0)}. Hence, the toroidal representation is more useful.

At this point we would like to point out the differences between the noncausal GMRF
models discussed in this section and the class of noncausal models known as spatial
autoregressive (SAR) models introduced in a pioneering paper [Whittle, 1954]. The
representation of {y(s)} obeying a SAR model is

vs)= I8 y(s*n) + /B uls). (2.27)

In (2.27), (er,reN) and B are unknown parameters, and w(.) is an 1ID noise sequence with zero

mean and unit variance. The neighbor set N does not include (0,0) and need not be

symmetric. However, if N has symmetric neighbors the corresponding coefficients should be

equal; ie, if reN and -reN, 6.= 6_, otherwise the parameters are not identifiable [Besag,

19741 If N is symmetric, a necessary and sufficient condition for {y()} to be stationary is
{1- £ 6. 2,2)

iyen Vi 71 223 £ 0.

for all z; and z, such that |z4] = |z5| = 1. Stability conditions for other cases may be found

in [Bose, 1982; Jain, 1981].

The main difference between the SAR model and the Gaussian GMRF model is that the
{y(s)} obeying (2.27) is not Markov with respect to the noncausal neighbor set N, i.e.,

ply(s) lall y(r), s #r) # p(y(s) [all y(s+r), reN)

However, when {y(s)} is Gaussian, it is possible to construct a set N1 which is a superset of
N such that y() obeying a Gaussian SAR model (2.27) is non causal Markov with respect to
N;. For instance, if N = {(0,1).(0,-1).(-1,0), (1,0)} then N, =[s:seNS or —seNS] where N$=[(1,0).
(0,1),(1,1),(-1,1),(0,2).(2,0)]. The converse is not always true. Given a GMRF model with
neighbor set N, there may not exist a finite parameter SAR model with the same second-
order properties. A simple example is the GMRF model with N={(0,1),(0,-1),(-1,0),(1,0)}. The
SAR models are useful for image restoration [Chellappa & Kashyap, 1982a), texture synthesis
[Chellappa & Kashyap, 1982b] texture classification [Kashyap et al., 1982] and 2-D spectral
estimation [Chellappa & Sharma, 1983]. Discussion of estimation methods and the decision
rules for choice of appropriate N may be found in [Kashyap & Chellappa, 1983].
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3. SYNTHESIS OF IMAGES USING GMRF MODELS

Prior to application of GMRF models for image synthesis and coding, it is useful to see
the kind of image patterns that are generated by GMRF models. In this experiment we
assume certain model structures and parameters characterizing the models, use a pseudo
random number generator to construct {e(s)} and generate {y(s)} obeying (2.15). It should be
pointed that since the models are noncausal, in general recursive generation schemes will
not be useful; for the case, when the spectral density function of the GMRF model factorizes,
recursive generation schemes can be used.

The synthesis procedure begins with the representation

BB y=e 31

where B(8) is a symmetric M2 x M2 matrix. Assuming that 6 takes values so that B'1(§)
exists, the image vector y can be written as,

=87l e 3.2)
Direct implementation of (3.2) is not very attractive due to the computational burden of
inverting an M2 x M2 symmetric matrix where M could be 32, 64 or 128. However, if we
assume that y(s) is represented on a toroidal lattice as in (2.22), then B_](Q) is a block-

circufant matrix with eigenvalues 1/115 and eigenvectors

fg = Coll1. A, )\izgj,.“, )\iM‘11j], s = (ij), an M%-vector

_ 2 M- 2mi
g = Col[1, )‘j' )‘j ‘“")‘i 1], an M-vector and A =exply=1 )
M
Thus, y can be computed as [Kashyap, 1981a; 1981b]
1 fo X
Is %s
v=—0 L °
M2 SE "
where
=T
stk e (33)

Since e is Gaussian with correlation matrix B(8), one can generate e as follows: let {w(s),
seQ} be an array of zero mean unit variance white Gaussian array. Generate an array of
random variables, {e(s), seQ} as,

e(s) = w(s)ug)’?

and let 1

2T T
E(s)=— L _e(nexpl-v/-1 _—(s'n]
M rel M

It can be shown [Woods, 1972] that the correlation matrix of £{(s)} is identical to that of
{e(s)}. For the case of toroidal lattice representation one can save some computations by
using the fact that the square root of B~ 1(8) is also block-circulant with eigenvalues 1//?8.
Consider the representation [Kashyap, 1981al
= /v

/B(8) v n (3.4)
where 1 is M2 vector of zero mean and unit variance Gaussian random numbers. It can be
easily checked that (3.4) is an equivalent representation of (2.23). The synthesis of y obeying
(3.4) can be done as
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v = 1 5 fs s
m2 sef Vi, (3.5)
where
- °T
xg=fs ' 1

(3.6)

We have given in Fig. 3.1, sixteen 64 x 64 image patterns generated using (3.5). The details
of the models are in Table 3.1. To make the display of synthetic textures pleasing to the
eyes, a constant a = 30.0 (corresponding to the mean of the image) has been added. The
gray scale values of the images lie in the range 0-63. It can be seen from an inspection of
Fig. 3.1, that the generated patterns are quite varied and some of them look similar to natural
textures. Diagonal neighbor sets seem to induce diagonal patterns, as in the windows in
positions (1,2),(1,3),(2,2), and (2,3). The role played by adding nearest neighbors can be
illustrated using patterns (4,2),(4.3), and (2,1). The window (4,2) corresponds to Ny =
{(1.0).(0,1),(2,0),(0,2)} and produces horizontaily oriented, macro structured strip patterns. By
adding the symmetric neighbor (1,1} a diffused version in window (4,3) is produced. When an
extra symmetric neighbor (1,-1) is added we obtain a more micro-structured pattern
resembling water. By adding similar neighbors to the model in (4.1), vertically oriented
patterns can be produced. To illustrate the role played by the coefficients in generating the
patterns, twelve, 64 x 64 patterns corresponding to the GMRF model Ng = {1111},
a=30.0, v =1.1111, 6_1'1 = .28 and 61,1= -.14 were generated. It was found [Chellappa, 1981]
that the basic pattern is still retained in all images but the “busyness” of the pattern varied.
All the patterns considered, thus far, were generated using the same pseudo random number
generator. As illustrated in [Chellappa, 1981], different pseudo random sequences produce
very small perturbations in the patterns.

Fig. 3.1 Synthetic patterns generated by GMRF models in Table 3i1.
4. ESTIMATION IN GMRF MODELS

4.1 Introduction

In any practical application of GMRF models, two problems have to be tackied, namely,
given the structure of the model, methods for estimating the parameters of the model and
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TABLE 3.1 DETAILS OF GMRF MODELS CORRESPONDING TO
SYNTHETIC IMAGES IN FIG. 3.1. FOR ALL OF THEM
o =300 v=11111

Model Number Neighbor Set NS and Coefficients
(row, column)

(. (1.0, (0.1
2794 1825
(1.2) S ()
28 -.14
(1.3) (=1.1). (1.1)
-14 28
(1,4) (1,0, (1,-1). (0,1), (1.1
3357 -.25 3246 -.2126

(2.1 (1.0, (1.=-1), (0.1). (1.1), (2.0), (02)
-2061 .0536 -.2061 .0536 -0123 -.0580
(2,2) (-0, (1L1), (20), (02), (2-2), (22)
-2341 4682 0655 .0655 -.0655 -.0655
(2,3) (-1,1), (1.1)
28 -22
(2,4) (1.0). (0,7), (2,0), (0,2), (3,0).(0,3),(4.0).(0.4)
12 -10 .08 -09 -11 .11 -07 .09
(€] (1,0), (0,1), (3,0), (0.3)
16 .10 .12 -4
(3.2) (1,0), (0,1), (3,0), (0.3)
10 16 =14 12
(3.3) (1,0), (0.1), (1,1), (=1,1), (3,0), (0,3)
12 -10 .08 -09 -11 .11
(3.4) (0.2), (2.0
2794 1825
(4.1) (1.0), (0,1), (2,0), (0,2)
12 -24 16 -18
(4.2) (1,0}, (0.1}, (2,0), (0,2)
-24 12 -18 .16
(4.3) (1,0), (0,7), (1,7), (2,0), (0,2)
-24 12 11 -18 .16
(4.4) (0,7), (1,0)
-12 .18

secondly, estimating the structure of the appropriate model itself. By first assuming that the
neighbor set N of the GMRF model is known, we discuss several estimation schemes for
GMRF models. Particularly, we stress the asymptotic statistical properties like consistency
and efficiency of these estimates. The problem of choosing appropriate GMRF model for the
given data is considered in Section 5.

Since in noncausal GMRF models, the expectation of y(s) conditioned on y(r), r#s is a
function of y(s+r), reN,

p(y(s), s€Q) # g1 ¢ ply(s)| all y(s+n), re N),

Hence, it is extremely difficult to write the likelihood function p(y(s),s€Q) except in Gaussian
situations. In Gaussian case, one can easily write an expression for log p(y(s), se |8,v)) by
evaluating the mean and covariances of {y(s)}. In general, due to the fact that the Jacobian
of the transformation matrix B(8) in (2.24) is not unity, but a complicated function of 8 for
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GMRF models, log p(y(s),s€Q|6,v) is computationally involved for infinite lattice GMRF models.
However, for the special case of finite lattice GMRF models, discussed in Section 2.3.2, one
can evailuate easily the Jacobian of the transformation matrix and hence the likelihood
function. The resuiting likelihood function is a non-quadratic function of the parameters
necessitating the use of numerical optimization algorithms.

To avoid the difficulty associated with obtaining the likelihood function in a general
case and the associated computations, an ingenious estimation scheme known as the coding
method was developed in [Besag, 1972; 1974]. This method is useful for both Gaussian and
non-Gaussian models. However, the coding estimate is not as efficient as the ML estimate
as it only uses part of the given data. An estimate whose efficiency lies between that of the
coding and ML estimates for Gaussian GMRF modeis was analyzed in [Kashyap & Chellappa,
1983]; this estimate was recommended in an earlier paper [Woods, 1972].

In this section, we discuss several estimation schemes mentioned above and give the
results of the LS method applied to synthetic data generated by known GMRF model. A
comparison of efficiencies of the coding, LS and ML estimates is given for a simple isotropic
GMRF model with N={(0,-1), (0,1), (-1,0), (1,0)}.

4.2 Coding Method
Assume that the observations {y(s)} obey the GMRF model

v{s) = I = 8 .[y(s+r) + y(s-n)] + e(s), Vs,
reNg
where {e(s)} is a zero mean correlated noise sequence with variance v and correlation
structure given in (2.16). Consider the case of GMRF model with Ng = {(0,1), (1,0)},
characterized by 8 = Col. [6 reNS]. The conditional distribution p(y(s)|y(s+r’), all r'eN) is of
the form,

r-

1

1
PY(s) ly(s+n), reN) = expl-——(v(s)- I 0, y(s+n)?]

(2mv)172 2v

and the coding estimate 6. is given by

0. =1 on as)aT ()] (F asvo)

where
a(s) = Colly(s+r) + y(s-r), reNg]

and 90 is a subset of @ (consisting of sites marked X in Fig. 4.1). The coding scheme vyields
another estimate similar to g'c, say g"c, with the sum being evaluated over Q - QO. One of
the main disadvantages of this method is that the estimates thus obtained are not efficient
[Moran & Besag, 1975] due to the partial utilization (50%) of the data. Also, for a particular
GMRF model, more than one coding scheme can be realized, yielding several estimates likely
to be highly dependent. For instance, in the Mercer-Hall wheat data and a GMRF model with
Ng = {(0,1), (1,0), (1,1}, (-1,1)} the estimates of 90‘1 obtained by four possible coding schemes
are *043, *085, *243, *236 [Besag, 1974] and a simpte averaging of these highly dependent
estimates is not satisfactory.

4.3 A Consistent LS Estimation Scheme

Consider the estimates

0% = [Z a(s) @ ()71 (T als)v(s)
% 4 (a.1)
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1 B
v= —— F (vs) - 8 el
el (4.2)

where @ is the region of 0 containing the interior pixels. The estimate 8% obtained is an
improvement over g'c or 8”c. The statistical properties of this estimate derived in [Kashyap
& Chellappa, 1983] are summarized below in a theorem.

x ° x . x . x L]

. x ° x ° x ° x
Fig. 4.1 Coding pattern for a first-order scheme [Besag. 1974].
Theorem 4.1: Let y(s), se§l be the set of observations obeying the GMRF model (2.15). Then

1. The estimate 8* is asymptotically consistent.

2. The asymptotic covariance matrix of 8%, is

E((8-8%)(8-87)" = —

Y
_ _ T\-1
T- val+2v2@Te - — 07D I8 W, (@17
m2 2 s

(s-r)eN
where
Q = Elg(s)a’(s)]

and
W= Ela(na'(s)]

For the isotropic conditional model with NS = {(0,1), (1,0)}, the asymptotic
expected mean square error is

262(1-480, 0)2 cov(y(s).y{s+(1.0)))
E(0-6%2= — " where P10~ (4.3)
4M2021 0 cov(y“(s))

The elements of matrices Q and W, . are functions of normalized autocorrelation
coefficients P 1
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We give the results of applying the LS estimation scheme to some synthetic data
generated from a known GMRF model. The synthetic generation scheme in Section 3 was
used. The results of the estimation scheme are given below.

Experiment 4.1: (Gaussian Data and a GMRF model with Ng = {(-1,1), (1,1)}.

The true model is defined as follows: v = 1.1111, 0_]’1= - .14, and 61'1 = .28. Using
this model, synthetic data was generated. For estimation of parameters, consistent
estimation scheme in (4.1), (4.2) was used. The actual values of the estimates of the
parameters are 9*_” =-.1410, 6%, ; = 0.27875 and v*= 1.1033 which are numerically close

to the true parameters. As a conséquence, the pattern generated by the GMRF model with
estimates of parameters is close to the true pattern.

4.4 ML Estimation of Parameters

The ML estimates are obtained by minimizing the function, [Kunsch, 1981]

(—Z/Mz)log p(vl0.v) = [Tlog S(A.8)1 dx+(1/v)ICy-2 rEN 8,C l+log 2m (4.4)
2 s
(2m)
where
v
S(A.9) = ,
(1-22 6, cos AT+r) (4.5)
reNS
and C, are the sample correlations
1
C. = —— &_v(s)y(s+r)
r
M2 sef
The estimates obtained by minimizing (4.4) should satisfy
(1-2 £ er cos )\T'r) >0
reNS
for the model to be stabte. The ML estimate éthus obtained afso satisfy
[ cos(AT+r)s(r,8)dx = c, (4.6)

47?2

The ML estimate are computationally involved due to the evaluation of the integral.
Preliminary results indicate [Sharma & Chellappa, 1983] that convergence can be obtained for
first—- and second-order MRF models in about 30-40 iterations. The IMSL routine ZXMIN was
used in this study for parameter estimation.

An usefulness of (4.6) is in developing a GMRF model -based approach for 2-D
maximum entropy power spectrum (MEPS) estimation. Using the fact that the 2-D MEPS has
a structure similar to that of the spectrum (4.5) of GMRF models and (4.6), a model based
approach has been developed [Sharma & Chellappa, 1983] recently for 2-D MEPS estimation.
The ML estimation scheme may not be practical for image and signal processing applications
involving large values of M. By using special boundary conditions, computational load can be
reduced as discussed in the next section.

4.5 Estimation of Parameters in Finite Lattice Models

The coding method and LS estimation scheme in Section 4.3 can be directly extended
to finite toroidal lattices by summing over §. Numerical simulations indicate that the
differences in the values of 9% for infinite and finite toroidal lattice representations are
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negligible. The ML estimate for general GMRF modeis can be obtained by assuming the
toroidal lattice representation for {y(s)} and Gaussian structure for {e(s)} and writing down
the log-likelihood function. For the toroidal representation corresponding to (2.22) the log-
likelihood function log p(y|6,v) can be written as [Moran & Besag, 1975],

.
log p(yl6,v) = £ _log (1-28Toy) - (M?/2) log 2y - — yTB(B)y (4.7)
= sefl 2v

Note that the contribution of the exponent term of the probability density function is
linear in & unlike the case of SAR modeéls, where this term is quadratic [Whittle, 1954;
Kashyap & Chellappa, 1983]. Numerical optimization procedures like Newton-Raphson can be
used to obtain the ML estimates. Since the summation term can be computed using 2-D
FFT, (4.7) is easier to evaluate compared to (4.5). An asymptotic technique for 2-D MEPS
estimation using toroidal representation is in [Chellappa, Hu & Kung, 1983]

Similarly likelihood functions can be written down for GMRF models represented on
other types of finite lattices. For instance, [Kashyap, 1981a] suppose we divide the finite
lattice Q into two mutually exclusive and totally inclusive subsets Ql, the interior set and QB,
the boundary set.

Qg = {s = (i,j); sef and (s+r) £ Q for any member reN}
Q=9-9

Let the GMRF model be characterized by a neighbor set N ={s1=(0,1), §1=(0,—1), $2=(1,0),
so=(-1,0)}. Consider

2
¥is) = B Oi(v(s*s)) + y(s*sy) + e(s), seq

and

n

y(s) = i=21 Bilyq(s+s)) + vq(s+s))+ e(s), seQy

where - -
y1(s+si) +yqlsts) =2 y(s+si) if (s+si)eQ, (s+si)£ Q

2 y(s+§i) if (s+s;) £ Q, (s+s;)eQ

y(s+s;) + y(s+§i), otherwise

The above equations can be written in the form of
B y=¢e

where y and e are M2 x 1 vectors of arrays {y(s)} and {e(s)}. One can show [Kashyap, 1981al
that the eigenvalues Hi i (i,j) € of B(8) are

Wi = 1+ 20999 * 2629

where
¢] = cos(jn/M-1)

with the corresponding eigenvector
n;j = Col. [ng(®)) n', Ny(&n’.npy_q (6Pl 0 < i j < M-1
ni = Col. [n0(¢i), n1(¢j)""'nM—1 (¢i)]’ an M-vector and

ni(¢;) = cos (1 i 1/M=1), i) = 0.1...M-1.
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Hence, the exact likelihood function for this finite model is

1
log p(y8,v) = log u;j = (M?/2) log 21y Lo llOgPuy 48

2 (i,j)zz-:Q 2y ()R

where Z()‘i,') are the 2-D discrete cosine transform of {y(s)}, defined by the eigenvectors of
B(8) given in (2.24). However, it may be noted that the likelihood function in (4.8) is exact
only for the particular neighbor set N ={(0,1), (0,-1), (-1,0), (1,0)}. Similar likelihood function
using discrete sine transforms may be obtained for the finite lattice model

2
y(s} = i=21 Bi(v(s*s;) + y(s+§i)) + e(s), seQ

and

N

v(s) = I Bilyqs+s) + yq(s+s)) + e(s), seflg
where
vq(s+5) + vq(s+S)) = v(s+s)) if (s+5) £Q
= Y(s+5) if (s*s)) £0Q

The families of finite lattice GMRF models having sine or cosine eigen-vectors is not as rich
as that of finite lattice GMRF models having discrete Fourier eigenvectors, in that the latter
representation is valid for arbitrary symmetric N while the former two are valid only for
symmetric N involving nearest neighbors. Since in any given application, models with
neighbor sets more general than the nearest neighbors may be required, one may obtain ML
estimates for these models using toroidat assumption.

4.6. Comparison of Estimates

We compare the asymptotic variance of the estimate (4.1), with the asymptotic
variances of the coding estimate and ML estimate for the isotropic conditional model with
N ={(0,1), (1,0)}. From [Moran & Besag, 1975], the asymptotic variance of the coding estimate
is

1-4
M2 Var (87,) = ﬂ,
2010

Also from [Moran & Besag, 1975], the variance of the ML estimate, eML is

R 05
vVar Opg) = —————
M2(1(8)-4v2, (8))
where
1 oq. (cos x+cos v)2 dxdy
ey = I, 5 (49)
4n2 (1-26(cos x+cos vy))
and
1 2m cos(sx+ty) dxdy
V() = jo J .
4m2 (1-26(cos x+cos vy)) (4.10)

Tabulated values of V4(6), aq g and I(6) are available in [Moran & Besag, 1975] for different
values of 6. Using these values, and (4.3), (4.9), and (4.10), the columns 2-4 of Table 4.1 are
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TABLE 4.1 COMPUTATION OF ASYMPTOTIC VARIANCES AND
EFFICIENCIES OF DIFFERENT ESTIMATES IN ISOTROPIC
CONDITIONAL MODEL WITH Ng = {(0,1).(1,0)}

46 M2var(§y,) M2var(6c)  MZvar(6%)  eff(6) eff(6%)
A .4928 .497 494 99 9975
2 472 489 478 965 987

3 437 474 450 921 971

4 390 454 412 .859 946
5 333 427 365 779 912
6 267 393 309 681 864
7 197 349 244 564 807
.8 .1243 296 1753 419 .709
9 0556 224 1004 248 553

*Columns 2, 3, and 5 are from [Moran & Besag, 1975].

computed. The asymptotic efficiencies, in columns 5 and 6, are defined as below:
eff(0'¢) = Var(8y, )/Var(6',)

and A
eff (6*%) = Var (GML)/Var(G*)

It is evident that the estimate 6* computed using (4.1) is more efficient than the coding
estimate but is not as good as ML estimate.

5. DECISION RULES FOR THE CHOICE OF
APPROPRIATE GMRF MODEL

5.1 Motivation and Possible Approaches

One of the problems to be tackled in fitting a model to the given image data is the
selection of the order of the model to be used. Since the structure of the GMRF model is
defined by the underlying neighbor set N of the model, the problem is to decide the
appropriate N to be used.

From 1-D time series analysis [Box & Jenkins, 1976], it is known that a model of
appropriate order should be fitted to obtain good results in applications like forecasting and
control. A similar situation is true in the case of 2-D GMRF models. In fact, the problem
becomes more difficult due to the rich variety of model structures. For instance, within the
class of GMRF models, different neighbor sets account for different image patterns as shown
in Section 3 and the quality of the reconstructed image varies considerably depending on
how similar the underlying model is to the true mode! and hence the use of appropriate
neighbor set is important.

The possible approaches are using pairwise hypothesis testing [Anderson, 19621,
Akaike’s information criterion (AIC), [Akaike, 1974], Bayes approach [Kashyap, 1977; Schwarz,
1978], and Hannan's procedure [Hannan & Quinn, 1979]. The pairwise hypothesis testing
method has been used for GMRF models in the modeling of field data [Besag, 1974] and
textures [Cross & Jain, 1983]. The main criticisms of this approach are that the resulting
decision rules are not always transitive, i.e., if a model Cq is preferred to Cyp and Cy is
preferred to Cy3 then it does not follow always that Cy is preferred to Cj [Kashyap, 19771
Further, the decision rules are not consistent, i.e, the probability of choosing an incorrect
model does not go to zero even as the number of observations goes to infinity.
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The model selection problem comes under the category of multiple decision problem.
A method that is well suited for this problem is to compute a test statistic for different
models and choose the one corresponding to the minimum. The AIC criterion and the Bayes
method are two such procedures. The AIC test statistics can be computed for GMRF models
from the expression of the log-likelihood function given (4.5) or (4.7); the best model is the
one which minimizes the AIC statistic. The AIC method, in general gives transitive decision
rules but is not consistent even for one-dimensional autoregressive models [Kashyap, 1980].

In the Bayes approach of fitting models to the image, various possible models are
postulated as mutually exclusive hypotheses C; 1< i <k. The hypothesis that maximizes the
posterior probability density P(Ci|y(s),s€§2) is chosen as the appropriate model with minimum
probability of error. This approach involves obtaining an expression for the likelihood of the
observations and integrating it over the parameters using an appropriate prior probability
density function. One can also develop a decision rule for assigning {y(s)} to one of the
hypotheses C;, i=1,..k so as to minimize a suitable criterion function and also determine the
probability of error associated with the decision. The loss function can be chosen to reflect
the particular needs of the problem, such as forecasting or estimation of spectral density
[Kashyap, 1977].

In this section, we give a decision rule obtained using Bayesian method for finding an
appropriate GMRF model. We assume that the given observation set could have possibly
been generated by one of k mutually exclusive models or hypotheses denoted by C;, 1< i
<k. These hypotheses are GMRF models of different neighbor sets. Under this assumption
one can write the expression for joint density of observations, as described in Section 4 and
integrate this probability density function over the parameter space using a regular prior
probability density function and asymptotic integration [Lindley, 1961]. Using this expression
and the prior probabilities P(C;), i=1,..k, of the hypotheses, a decision rule for choosing a
model with minimum probability of error can be designed. If the prior probability densities
are given, one can explicitly compute the posterior densities and take appropriate decisions.
For situations where prior densities are not known explicitly, we suggest using that portion of
the posterior density function, which does not involve the prior densities. Though this rule
does not have the minimum error rate property, it is asymptotically weakly consistent.

5.2 Decision Rules

Currently, known methods for choosing an appropriate GMRF model from a class of
such models use pairwise hypothesis testing procedures employing coding estimates. In
addition to being non-transitive and inconsistent, this method has several drawbacks due to
the usage of coding estimates. Since more than one coding estimate results for a GMRF
model, it is quite possible that a GMRF model gets accepted or rejected when different
coding estimates are used. Further, when we are choosing between a first-order GMRF
model and a second-order GMRF model, to ensure that the likelihoods are comparable, the
coding schemes corresponding to the higher order mode! should be used leading to the use
of highly inefficient estimates of the lower order model. Decisions rules that are transitive,
asymptotically consistent and which do not possess the above mentioned drawbacks can be
derived by using the Bayes procedure. Instead of getting into details, we simply state the
problem, give the decision rule and simulation results.

Suppose we have k sets Ngq... Ng, of neighbors containing mq, My,..,Mm members,

respectively. Corresponding to each Ng; we write the GMRF model as

y(s) = rEZ 8, (y(s+r) ® y(s-1)) + Ni e(s), se

® denotes modulo M along both the co-ordinate axes, ei, , #0, re Nsi' v > 0, i=1,...k and
e(s) is Gaussian. Then, the decision rule for the choice of appropriate neighbors is: [Kashyap

& Chellappa, 1983] choose the neighbor set Ng* if,
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i* = Argument min{g,}
n

where
9p =72 sze:Q loQU_QnﬁT bng) M2 log VR + m, log (m2),
(5.1)
and gn*T = Col. [6],. reNg,]
2T T
9 = Col. [cos Mi (s'r), reNg,]

The model selection procedure consists of computing g, for different models and choosing
the one corresponding to the lowest g,,. One can write similar test statistics for general
GMRF models using (4.4).

To illustrate the usefu